MHB Can the premise P∨Q be ignored in a propositional logic proof?

Click For Summary
In the discussion about whether the premise P∨Q can be ignored in a propositional logic proof, the user seeks to derive a conclusion involving several premises. They express difficulty in proving the conclusion when assuming Q, while successfully deriving it under the assumption of P. A suggestion was made that ignoring P∨Q might be permissible, prompting the user to explore this idea further. They outline a proof structure that leads to the conclusion negating Q, questioning the validity of omitting the premise. The user concludes that they see no reason to retain P∨Q in their proof.
Guest2
Messages
192
Reaction score
0
I've to derive the following proposition in PL using the system in http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/propositional-logic-8386.html (in which Evgeny.Makarov has explained everything ever so kindly to me).

I'm trying to prove $\displaystyle P \vee Q, ~(R ~ \& ~ P) \to \neg Q, ~R, ~ R \to P: \neg Q$. I tried using disjunctions by assuming P to get the conclusion - but then when assumed Q to get the conclusion (its negation) I got stuck. Someone told me that I can ignore $ P \vee Q$ and get the conclusion without. Is this really allowed? In that case I could do the following, I think:

$ \begin{aligned} & \left\{1\right\} ~~~~~~~~~ 1. ~ P \vee Q\ldots \ldots \ldots \ldots \text{premise}
\\& \left\{2\right\} ~~~~~~~~~ 2. ~ \left(R ~ \& ~ P\right) \to \neg Q \ldots . \text{premise}
\\&\left\{3\right\} ~~~~~~~~~ 3. ~R \ldots \ldots \ldots \ldots \ldots \ldots \text{premise}
\\&\left\{4\right\} ~~~~~~~~~ 4. ~R \to P \ldots \ldots \ldots \ldots\text{premise}
\\&\left\{3, ~ 4\right\} ~~~~~ 5. ~P \ldots \ldots \ldots\ldots\ldots .. 3, ~4 \text{MP}
\\&\left\{3, ~4\right\} ~~~~~ 6. ~ R ~ \& ~ P\ldots \ldots \ldots \ldots. 3,5 \text{& I}
\\&\left\{2,~3,~4\right\} ~7. ~ \neg Q \ldots\ldots\ldots\ldots\ldots \text{2, 6 MP} \end{aligned} $

But I'm not sure whether I can really do that. My book has something it calls 'augmentation' and I suspect it may have something to do with that.
 
Last edited:
Physics news on Phys.org
It looks good to me. I don't see any reason why you can't ignore the premiss $P\lor Q$.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...