MHB Can the Root Function Solve Inequalities?

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Suppose, that $f(x)=ax^2+bx+c$, where $a$,$b$ and $c$ are positive real numbers. Show, that for all non-negative real numbers $x_1,x_2,…,x_{1024}$

\[\sqrt[1024]{f(x_1)\cdot f(x_2)\cdot \cdot \cdot f(x_{1024})} \geq f\left ( \sqrt[1024]{x_1\cdot x_2\cdot \cdot \cdot x_{1024}} \right )\]
 
Mathematics news on Phys.org
Hint:

It might be of use first to show, that
\[f(x)\cdot f(y)\geq \left (f\left ( \sqrt{xy} \right ) \right )^2\]
 
Suggested solution:

Let us show, that for all $x,y > 0$

\[f(x)\cdot f(y)\geq \left (f\left ( \sqrt{xy} \right ) \right )^2 \;\;\; (1)\]

Indeed,

\[f(x)\cdot f(y) - \left (f\left ( \sqrt{xy} \right ) \right )^2 = ab(x^2y+xy^2-2xy\sqrt{xy})+ac(x^2+y^2-2xy)+bc(x+y-2\sqrt{xy}) \\\\ =abxy(\sqrt{x}-\sqrt{y})^2+ac(x-y)^2+bc(\sqrt{x}-\sqrt{y})^2 \geq 0.\]

Now by $(1)$

\[f(x_1)f(x_2)...f(x_{1024})\geq \prod_{i=1,3,5,…}^{1023}\left ( f\left ( \sqrt{x_i\; x_{i+1}} \right ) \right )^2 \geq \prod_{i=1,5,9,…}^{1021}\left ( f\left ( \sqrt[4]{x_i\;x_{i+1}\; x_{i+2}\; x_{i+3}} \right ) \right )^4 \geq ...\geq \left ( f \left ( \sqrt[1024]{x_1x_2...x_{1024}} \right ) \right )^{1024}\]

The required inequality readily follows.
 
Last edited:
lfdahl said:
Suggested solution:

Let us show, that for all $x,y > 0$

\[f(x)\cdot f(y)\geq \left (f\left ( \sqrt{xy} \right ) \right )^2 \;\;\; (1)\]

Indeed,

\[f(x)\cdot f(y) - \left (f\left ( \sqrt{xy} \right ) \right )^2 = ab(x^2y+xy^2-2xy\sqrt{xy})+ac(x^2+y^2-2xy)+bc(x+y-2\sqrt{xy}) \\\\ =abxy(\sqrt{x}-\sqrt{y})^2+ac(x-y)^2+bc(\sqrt{x}-\sqrt{y})^2 \geq 0.\]

Now by $(1)$

\[f(x_1)f(x_2)...f(x_{1024})\geq \prod_{i=1}^{1023}\left ( f\left ( \sqrt{x_i\; x_{i+1}} \right ) \right )^2 \geq \prod_{i=1}^{1021}\left ( f\left ( \sqrt{x_i\;x_{i+1}\; x_{i+2}\; x_{i+3}} \right ) \right )^2 \geq ...\geq f\left ( \left ( \sqrt{x_1x_2...x_{1024}} \right ) \right )^{1024}\]

The required inequality readily follows.
in my humble opinion in the 1st product i change by 2 in the 2nd by 4 so on (this is not depicted in expression) and the 1st power is 2 in second 4 so on
 
kaliprasad said:
in my humble opinion in the 1st product i change by 2 in the 2nd by 4 so on (this is not depicted in expression) and the 1st power is 2 in second 4 so on

Thankyou, kaliprasad, for pointing out the errors in the suggested solution.(Handshake)
I´m sorry for having posted a solution with severe typos.(Sadface)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top