Fernando Revilla said:
Well, then surely is not an isolated problem. Perhaps you need it to prove another thing, perhaps the inequality is only a conjecture, etc. I haven't been able to prove it. Even using the Incomplete Gamma Function, I can't avoid the $17/16$ bound.
I'll try again, but I can't assure you anything.
Right, it isn't an isolated problem. I have to proof one quite big theorem and a part of this proof is this inequality.
I have another idea, how could this theorem be proved.
We have to proof, that $ \frac{m!}{\lambda^{m+1}} \cdot \sum_{j=0}^{m} \frac{\lambda^j}{j!} \leq \frac{2}{\sqrt \lambda} $ для $m+1 < \lambda $.
So we have:
$ \frac{m!}{\lambda^{m+1}} \cdot \sum_{j=0}^{m} \frac{\lambda^j}{j!} \leq \frac{2}{\sqrt \lambda} \Leftrightarrow m! \cdot \sum_{j=0}^{m} \frac{\lambda^{j-m-\frac{1}{2}}}{j!} \leq 2 \Leftrightarrow m! \cdot \sum_{j=0}^{m} \frac{1}{\lambda^{m+\frac{1}{2}-j} \cdot j!} \leq 2 $.
Because of $ m+1 < \lambda $, it's enough to proof, that $ m! \cdot \sum_{j=0}^{m} \frac{1}{(m+1)^{m+\frac{1}{2}-j} \cdot j!} \leq 2 $.
Further: $ m! \cdot \sum_{j=0}^{m} \frac{(m+1)^{j-m-\frac{1}{2}}}{j!} = \frac{m!}{(m+1)^{m+\frac{1}{2}}} \cdot \sum_{j=0}^{m} \frac{(m+1)^j}{j!}=\frac{m!}{(m+1)^{m+\frac{1}{2}}} \cdot e^{m+1} \cdot \sum_{j=0}^{m} e^{-(m+1)} \frac{(m+1)^j}{j!}$
$=\frac{m!}{(m+1)^{m+\frac{1}{2}}} \cdot e^{m+1} \cdot Po(m+1)([0,m]) $ Using the identity theorem of power series, we can proof, that $Po(m+1)([0,m])=\int_{(m+1)}^{\infty} \left( e^{-t} \cdot \frac{t^m}{m!} \right) dt $
In this way we get: $ m! \cdot \sum_{j=0}^{m} \frac{(m+1)^{j-m-\frac{1}{2}}}{j!} = \frac{m!}{(m+1)^{m+\frac{1}{2}}} \cdot e^{m+1} \cdot \int_{(m+1)}^{\infty} \left( e^{-t} \cdot \frac{t^m}{m!} \right) dt $.
After many calculations we get:
$ m! \cdot \sum_{j=0}^{m} \frac{(m+1)^{j-m-\frac{1}{2}}}{j!}=\frac{m!}{(m+1)^{m+\frac{1}{2}}} \cdot e^{m+1} \cdot Po(m+1)([0,m]) \leq$
$\leq \sqrt{m+1} \cdot \int_{1}^{\infty} exp \left( (1-t)-\frac{m(1-t)^2}{2} \right) dt $.
And the actual question:
Is it possible to proof. that $ \sqrt{m+1} \cdot \int_{1}^{\infty} exp \left( (1-t)-\frac{m(1-t)^2}{2} \right) dt \leq 2 $
If it is possible, then the proof is done!