Can We Divide Vectors?

  • Context: High School 
  • Thread starter Thread starter PhyHunter
  • Start date Start date
  • Tags Tags
    Vectors
Click For Summary
SUMMARY

Vectors cannot be divided in the same way as numbers due to the lack of a unique result from vector division operations. The discussion highlights that while operations like the dot product and cross product exist, they do not yield a one-to-one correspondence necessary for defining division. Instead, vector operations are typically defined within the context of vector spaces, where division is not a canonical operation. The conversation also touches on the concept of pointwise multiplication of vectors, but emphasizes that this does not equate to division.

PREREQUISITES
  • Understanding of vector operations such as dot product and cross product
  • Familiarity with vector spaces and their properties
  • Knowledge of matrix multiplication and its rules
  • Basic concepts of Functional Analysis and Banach Algebras
NEXT STEPS
  • Research the properties of vector spaces and why division is not defined
  • Learn about the implications of the dot product and cross product in vector mathematics
  • Explore the role of pointwise multiplication in vector analysis
  • Study the fundamentals of Functional Analysis and its applications in linear algebra
USEFUL FOR

Mathematicians, physics students, and anyone interested in advanced vector mathematics and the principles of linear algebra and Functional Analysis.

PhyHunter
Messages
47
Reaction score
0
Can we divide two vector ? If we can't why
 
Mathematics news on Phys.org
It is not as much that we can't, but that there is little point in doing so.
To understand that, remember that "division" is supposed to be the "opposite" of multiplication, so that if a/b=c, that simply means that it follows that a=b*c.
Furthermore, we want "c" to be a UNIQUE quantity, rather than that there exists lots of quantities that might be said to be the result of the division a/b.

So, to answer your question on vectors, we need to see what sort of vector multiplications we've got.
We have for example, the so-called cross product of vectors, but in a=b(cross)c, there are lots of c's we can use, that cross multiplied with "b" yields "a".

Thus, an "opposite" operation of cross multiplication does not provide us with a unique answer, and we choose therefore not to define such an operations.

There are other troubles with trying to define vectorial division as well, so it is typically not defined as an operation at all, at least to my knowledge.
 
Obviously we can define something similar, as we can define multiplication pointwise of vectors.

multiplication:
(a,b,c)(d,e,f)= (ad,be,cf)

divison when d,e,f\neq 0 :
(a,b,c)/(d,e,f)=(a/d,b/e,c/f)

Obviously, you will see this popping up in Functional Analysis, which is a generalization of linear algebra.
 
divison when [tex said:
d,e,f\neq 0[/tex] :
(a,b,c)/(d,e,f)=(a/d,b/e,c/f)

Obviously, you will see this popping up in Functional Analysis, which is a generalization of linear algebra.

How do you prove it ?
 
The best way to deal with vectors is to work in a vector space. A vector space has no canonical division operation. So it does not make sense to divide two vectors. I suppose you can make sense of it in specific situations, but nobody will call it division.
 
PhyHunter said:
How do you prove it ?

Prove what? He's giving you a definition.
 
MathematicalPhysicist said:
Obviously, you will see this popping up in Functional Analysis, which is a generalization of linear algebra.

Really? The product you defined is not coordinate independent and since nearly all of the spaces arising in functional analysis have no natural choice of basis, it would surprise me to learn that component-wise products play an important role anywhere in functional analysis.
 
Well, you can check the subject of Banach Algebras, I first encoutered this subject in the second course in Functional analysis which was given at my school.
 
Well, you can check the subject of Banach Algebras, I first encoutered this subject in the second course in Functional analysis which was given at my school.

I am familiar with Banach algebras, and while I get where you are coming from now, the claim that component-wise products are honestly studied in functional analysis still seems silly to me. As you certainly know, almost all of the Banach algebras that occur "in nature" have coordinate invariant products (i.e. they do not depend on a particular choice of basis) and as a result, are not given by component-wise multiplication. The examples you gave are certainly subsumed into the theory of Banach algebras, but as a matter of taste I would not really say they come up in functional analysis.

N.B. Since I do not intend to come across as argumentative, the one thing I want to make clear is that I do concede your point on this, just that I probably misinterpreted what you meant by "popping up in functional analysis"
 
  • #10
Can I say something.In matrices (2x1)/(2x1)=(2x2) we can say this because If we want to control that we must multiply (2x2)x(2x1) and we get (2x1) so I understand that a/b question's answer is two vector system.Can we say this ?
(HERE a and b vector) and (2x1) or (2x2) is matrices)
( (2x1) matrice symbolize vector)
 
  • #11
Can I say something.In matrices (2x1)/(2x1)=(2x2) we can say this because If we want to control that we must multiply (2x2)x(2x1) and we get (2x1) so I understand that a/b question's answer is two vector system.Can we say this ?
(HERE a and b vector) and (2x1) or (2x2) is matrices)
( (2x1) matrice symbolize vector)
 
  • #12
PhyHunter said:
Can I say something.In matrices (2x1)/(2x1)=(2x2) we can say this because If we want to control that we must multiply (2x2)x(2x1) and we get (2x1) so I understand that a/b question's answer is two vector system.Can we say this ?
(HERE a and b vector) and (2x1) or (2x2) is matrices)
( (2x1) matrice symbolize vector)

I don't quite understand what you mean. Can you rephrase?

The point others are making that you don't seem to be getting, however, is that there is no reason to have multiplication or division of vectors.

There are lots of operations on vectors which can seem like a form of multiplication (dot products, cross products etc...) but none of them are "one to one", meaning for a given output there is more than one possible input.

Now if you know that the input does not depend on the output, how are you going to define an inverse operation (akin to divison) that gives you the input based on the output?
 
  • #13
Sure,we symbolize vector in matrix (2x1) so If we try divide two vectors in matrix system, (2x1)/(2x1) we get (2x2) so if we want control this,we will multiply (2x2)x(2x1) and we get (2x1)
(2x1) is one vector (2x2) is two vector system

(2x2)x(2x1)=(2x1)
so we can say
(2x1)/(2x1)=(2x2)

If we want write this in vector system
pointwise of vectors
(a,b)/(c,d)=((a/c,0),(0,b/d))
or a/b=((c,d))
(a,b,c,d) vectors
 
  • #14
PhyHunter said:
Sure,we symbolize vector in matrix (2x1) so If we try divide two vectors in matrix system, (2x1)/(2x1) we get (2x2) so if we want control this,we will multiply (2x2)x(2x1) and we get (2x1)
(2x1) is one vector (2x2) is two vector system

(2x2)x(2x1)=(2x1)
In words: the product of a 2 x 2 matrix and a 2 x 1 matrix is a 2 x 1 matrix.
PhyHunter said:
so we can say
(2x1)/(2x1)=(2x2)
I don't see how this makes sense. Matrix multiplication is defined if the multiplication is conformable. IOW, AB makes sense if the number of columns of A is the same as the number of rows of B.

However, there is no concept of dividing one matrix by another. The property you are showing about the equivalence of multiplication and division is one that applies to real numbers, not matrices.
PhyHunter said:
If we want write this in vector system
pointwise of vectors
(a,b)/(c,d)=((a/c,0),(0,b/d))
or a/b=((c,d))
(a,b,c,d) vectors
 
  • #15
I am just trying to explain it.I wrote it because its a way to how can I found it.And my idea can be true ?
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
8K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K