MHB Can you check my proof for a limit formula

Click For Summary
The discussion focuses on proving that if two functions, f(x) and g(x), are equal in a neighborhood around a point a, then their limits as x approaches a are also equal. The proof starts with the assumption that the limits of f(x) and g(x) exist and are denoted as L and M, respectively. By assuming L is not equal to M and applying the triangle inequality, a contradiction is reached, demonstrating that L must equal M. The proof emphasizes the importance of correctly selecting delta values to ensure the functions remain equal in the specified interval. The conclusion affirms that the limits of both functions at point a are indeed the same.
Amad27
Messages
409
Reaction score
1
Hello,

Suppose there is a $\delta > 0$ such that $f(x) = g(x)$ when $0 < |x - a| < \delta$. Prove that $\displaystyle \lim_{x\to a} f(x) = \lim_{x \to a} g(x)$.

$|f(x) - L| < \epsilon$ for $|x - a| < \delta_1$

$|g(x) - M| < \epsilon$ for $|x - a| <\delta_2$

Let $\delta' = \min(\delta_1, \delta_2)$

Let $\delta' < \delta$

Therefore, $f(x) = g(x)$ for this interval $\delta'$

This gives us:

$|f(x) - L| < \epsilon$ for $|x - a| < \delta_1$

$|f(x) - M| < \epsilon$ for $|x - a| <\delta_2$

Thus, what is required is to prove $M = L$

Assume $M \ne L$

Since $\epsilon \in (0, \infty)$, this means $\epsilon = |L - M|/2$ is a possibility.

$|f(x) - L| < |L - M|/2$ for $|x - a| < \delta_1$

$|f(x) - M| < |L - M|/2$ for $|x - a| <\delta_2$ $|L - M| = |-(f(x) - L) + (f(x) - M)|$

The triangle inequality states,

$|f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$

Then,

$ |L - M|/2 + |L - M|/2 > |f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$

Which is a contradiction, therefore $L \ne M$ is false, and $L = M$ is the true statement.

$\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space \blacksquare$
 
Physics news on Phys.org
Hi,

You got the idea but there are some little mistakes, I put it in red

Olok said:
Hello,

Suppose there is a $\delta > 0$ such that $f(x) = g(x)$ when $0 < |x - a| < \delta$. Prove that $\displaystyle \lim_{x\to a} f(x) = \lim_{x \to a} g(x)$.

$|f(x) - L| < \epsilon$ for $|x - a| < \delta_1$
$|g(x) - M| < \epsilon$ for $|x - a| <\delta_2$

Let $\delta' = \min(\delta_1, \delta_2)$

Let $\delta' < \delta$ In essence, we don't let $\delta ' <\delta$, we need to choose $\delta_{1},\delta_{2}$ such that this inequility holds taking $\delta'$ as above

Therefore, $f(x) = g(x)$ for this interval $\delta'$ $\delta '$ is not an interval, but you can skip this sentence.

This gives us:

$|f(x) - L| < \epsilon$ for $|x - a| < $$\delta '$

$|f(x) - M| < \epsilon$ for $|x - a| <$$\delta '$

Thus, what is required is to prove $M = L$

Assume $M \ne L$

Since $\epsilon \in (0, \infty)$, this means $\epsilon = |L - M|/2$ is a possibility.

$|f(x) - L| < |L - M|/2$ for $|x - a| <$$\delta_{3}$

$|f(x) - M| < |L - M|/2$ for $|x - a| <$$\delta_{4}$

Being both $\delta_{3},\delta_{4}<\delta '$

$|L - M| = |-(f(x) - L) + (f(x) - M)|$

The triangle inequality states,

$|f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$

Then,

$ |L - M|/2 + |L - M|/2 > |f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$

Which is a contradiction, therefore $L \ne M$ is false, and $L = M$ is the true statement.

$\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space \blacksquare$
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K