Can you check my proof for a limit formula

  • Context: MHB 
  • Thread starter Thread starter Amad27
  • Start date Start date
  • Tags Tags
    Formula Limit Proof
Click For Summary
SUMMARY

The discussion centers on proving that if two functions, \( f(x) \) and \( g(x) \), are equal in a neighborhood around a point \( a \), then their limits as \( x \) approaches \( a \) are also equal. The proof utilizes the definitions of limits and the triangle inequality to establish that if \( |f(x) - L| < \epsilon \) and \( |g(x) - M| < \epsilon \) for sufficiently small \( |x - a| \), then \( L \) must equal \( M \). The contradiction arises when assuming \( L \neq M \), leading to the conclusion that \( \lim_{x \to a} f(x) = \lim_{x \to a} g(x) \).

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with the epsilon-delta definition of limits
  • Knowledge of the triangle inequality in mathematics
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the epsilon-delta definition of limits in detail
  • Explore the properties of continuous functions and their limits
  • Learn about the triangle inequality and its applications in proofs
  • Practice proving limits using various functions and scenarios
USEFUL FOR

Students of calculus, mathematics educators, and anyone interested in understanding the foundational concepts of limits and continuity in mathematical analysis.

Amad27
Messages
409
Reaction score
1
Hello,

Suppose there is a $\delta > 0$ such that $f(x) = g(x)$ when $0 < |x - a| < \delta$. Prove that $\displaystyle \lim_{x\to a} f(x) = \lim_{x \to a} g(x)$.

$|f(x) - L| < \epsilon$ for $|x - a| < \delta_1$

$|g(x) - M| < \epsilon$ for $|x - a| <\delta_2$

Let $\delta' = \min(\delta_1, \delta_2)$

Let $\delta' < \delta$

Therefore, $f(x) = g(x)$ for this interval $\delta'$

This gives us:

$|f(x) - L| < \epsilon$ for $|x - a| < \delta_1$

$|f(x) - M| < \epsilon$ for $|x - a| <\delta_2$

Thus, what is required is to prove $M = L$

Assume $M \ne L$

Since $\epsilon \in (0, \infty)$, this means $\epsilon = |L - M|/2$ is a possibility.

$|f(x) - L| < |L - M|/2$ for $|x - a| < \delta_1$

$|f(x) - M| < |L - M|/2$ for $|x - a| <\delta_2$ $|L - M| = |-(f(x) - L) + (f(x) - M)|$

The triangle inequality states,

$|f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$

Then,

$ |L - M|/2 + |L - M|/2 > |f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$

Which is a contradiction, therefore $L \ne M$ is false, and $L = M$ is the true statement.

$\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space \blacksquare$
 
Physics news on Phys.org
Hi,

You got the idea but there are some little mistakes, I put it in red

Olok said:
Hello,

Suppose there is a $\delta > 0$ such that $f(x) = g(x)$ when $0 < |x - a| < \delta$. Prove that $\displaystyle \lim_{x\to a} f(x) = \lim_{x \to a} g(x)$.

$|f(x) - L| < \epsilon$ for $|x - a| < \delta_1$
$|g(x) - M| < \epsilon$ for $|x - a| <\delta_2$

Let $\delta' = \min(\delta_1, \delta_2)$

Let $\delta' < \delta$ In essence, we don't let $\delta ' <\delta$, we need to choose $\delta_{1},\delta_{2}$ such that this inequility holds taking $\delta'$ as above

Therefore, $f(x) = g(x)$ for this interval $\delta'$ $\delta '$ is not an interval, but you can skip this sentence.

This gives us:

$|f(x) - L| < \epsilon$ for $|x - a| < $$\delta '$

$|f(x) - M| < \epsilon$ for $|x - a| <$$\delta '$

Thus, what is required is to prove $M = L$

Assume $M \ne L$

Since $\epsilon \in (0, \infty)$, this means $\epsilon = |L - M|/2$ is a possibility.

$|f(x) - L| < |L - M|/2$ for $|x - a| <$$\delta_{3}$

$|f(x) - M| < |L - M|/2$ for $|x - a| <$$\delta_{4}$

Being both $\delta_{3},\delta_{4}<\delta '$

$|L - M| = |-(f(x) - L) + (f(x) - M)|$

The triangle inequality states,

$|f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$

Then,

$ |L - M|/2 + |L - M|/2 > |f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$

Which is a contradiction, therefore $L \ne M$ is false, and $L = M$ is the true statement.

$\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space \blacksquare$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K