MHB Can You Derive a Reduction Formula for the Integral $\int \sec^nx dx$?

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Derive a reduction formula for the integral:

$\int \sec^nx dx, \;\;\; n \ge 2.$

- without any help from an online integrator.
 
Last edited:
Mathematics news on Phys.org
Suggested solution:

\[\int \sec^nxdx \\\\= \int \sec^2x\sec^{n-2}xdx = \tan x \sec^{n-2}x-(n-2)\int \tan x \sec^{n-3}x \sec^{2}x \sin xdx \\\\= \tan x \sec^{n-2}x-(n-2)\int \sin^2 x\sec^nxdx \\\\= \tan x \sec^{n-2}x-(n-2)\int (1-\cos^2x)\sec^nxdx \\\\= \tan x \sec^{n-2}x-(n-2)\int \sec^nxdx+(n-2)\int \sec^{n-2}xdx \\\\ \Rightarrow \int \sec^nxdx = \frac{\tan x \sec^{n-2}x}{n-1}+\frac{(n-2)}{(n-1)}\int \sec^{n-2}xdx\]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top