MHB Can you find the slope of a line passing through two points with this formula?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Line Slope
Click For Summary
The discussion focuses on deriving the slope of a line passing through two points, (x, x^2) and (x + h, (x + h)^2). The formula used for the slope is m = [(x + h)^2 - x^2]/[(x + h) - x]. Through simplification, it is shown that m equals 2x + h. The calculations confirm that the derived slope matches the expected result, concluding the proof effectively. The discussion successfully demonstrates the slope calculation using algebraic manipulation.
mathdad
Messages
1,280
Reaction score
0
Show that the slope of the line passing through the two points (x, x^2) and (x + h, (x + h)^2) is 2x + h.

Let me see if I can solve this baby on my own.

Let m = slope = 2x + h

m = [(x + h)^2 - x^2]/[(x + h) - x]

If I simplify the right side, it should give me m, right?

At the very end, I should have 2x + h = 2x + h.
 
Mathematics news on Phys.org
Simplify it, then ...
 
m = [(x + h)^2 - x^2]/[(x + h) - x]

m = [x^2 + 2hx + h^2 - x^2]/h

m = (2hx + h^2)/h

m = 2x + h

Done!
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 53 ·
2
Replies
53
Views
6K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K