anemone said:
Find the constants $$a,\;b, \;c,\; d$$ such that
$$4x^3-3x+\frac{\sqrt{3}}{2}=a(x-b)(x-c)(x-d)$$.
[math]\displaystyle \begin{align*} a\left( x-b \right) \left( x-c\right) \left( x-d \right) = a \, x^3 - \left( a\,b + a\,c + a\,d \right) x^2 + \left( a\,b\,c + a\,b\,d + a\,c\,d \right) x - a\,b\,c\,d \end{align*}[/math]
Equating the like powers of x we find
[math]\displaystyle \begin{align*} a &= 4 \\ \\ - \left( 4b + 4c + 4d \right) &= 0 \\ b + c + d &= 0 \\ \\ 4\,b\,c + 4\,b\,d + 4\,c\,d &= -3 \\ b\,c + b\,d + c\,d &= -\frac{3}{4} \\ \\ 4\,b\,c\,d &= \frac{\sqrt{3}}{2} \\ b\,c\,d &= \frac{\sqrt{3}}{8} \end{align*}[/math]
Rearranging the first equation we have [math]\displaystyle \begin{align*} b = -c - d \end{align*}[/math] and substituting into the second equation we find
[math]\displaystyle \begin{align*} \left( - c - d \right) c + \left( -c - d \right) d + c\,d &= -\frac{3}{4} \\ -c^2 - c\,d - c\,d - d^2 + c\,d &= -\frac{3}{4} \\ c^2 + c\,d + d^2 &= \frac{3}{4} \\ c^2 + c\,d + \left( \frac{d}{2} \right) ^2 - \left( \frac{d}{2} \right) ^2 + d^2 &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 + \frac{3d^2}{4} &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 &= \frac{ 3 - 3d }{4} \\ c + \frac{d}{2} &= \frac{ \pm \sqrt{ 3 - 3d }}{2} \\ c &= \frac{-d \pm \sqrt{ 3 - 3d } }{2} \end{align*}[/math]
and so [math]\displaystyle \begin{align*} b = - \left( \frac{-d \pm \sqrt{ 3 - 3d }}{2} \right) - d = \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \end{align*}[/math]
Substituting into the final equation, we find
[math]\displaystyle \begin{align*} \left( \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \right) \left( \frac{-d \pm \sqrt{ 3 - 3d } }{2} \right) d &= \frac{\sqrt{3}}{8} \\ \left( -d \mp \sqrt{ 3 - 3d} \right) \left( -d \pm \sqrt{ 3 - 3d } \right) d &= \frac{\sqrt{3}}{2} \\ \left[ d^2 - \left( 3 - 3d \right) \right] d &= \frac{\sqrt{3}}{2} \\ d^3 + 3d^2 - 3d - \frac{\sqrt{3}}{2} &= 0 \end{align*}[/math]
Now making the change of variable [math]\displaystyle \begin{align*} u = d + 1 \end{align*}[/math], we find
[math]\displaystyle \begin{align*} \left( u - 1 \right) ^3 + 3 \left( u - 1 \right) ^2 - 3 \left( u - 1 \right) - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 3u^2 + 3u - 1 + 3u^2 - 6u + 3 - 3u + 3 - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 6u - \frac{\sqrt{3} - 10}{2} &= 0 \end{align*}[/math]
and now applying the Cubic Formula, we have
[math]\displaystyle \begin{align*} u &= \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} + \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } + \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} - \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } \\ &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d + 1 &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } - 1 \end{align*}[/math]
Back-substituting will enable us to evaluate b and c.