Can You Match Constants to This Cubic Polynomial?

Click For Summary

Discussion Overview

The discussion revolves around finding constants \(a, b, c, d\) such that the cubic polynomial \(4x^3 - 3x + \frac{\sqrt{3}}{2}\) can be expressed in the form \(a(x-b)(x-c)(x-d)\). Participants explore various mathematical approaches, including trigonometric identities and Vieta's formulas, to derive these constants.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants suggest using the triple-angle identity for cosine to relate the cubic equation to trigonometric solutions, proposing substitutions like \(x = a \cos(\theta)\).
  • Others argue that by setting \(a = 4\), the polynomial can be simplified to a form that allows for the identification of roots using cosine values.
  • A participant mentions the use of Vieta's formulas to derive relationships between \(b, c, d\) based on the coefficients of the polynomial.
  • Some participants provide specific values for \(b, c, d\) based on their calculations, while others derive expressions involving square roots and cube roots, indicating a more complex solution process.
  • There are multiple proposed sets of values for \(b, c, d\), including permutations of cosine values derived from angles related to the cubic equation.

Areas of Agreement / Disagreement

Participants generally agree that \(a = 4\) is correct. However, there is no consensus on the values of \(b, c, d\), with multiple competing views and methods presented throughout the discussion.

Contextual Notes

Some participants' approaches rely on specific assumptions about the roots and their relationships, which may not be universally applicable. The discussion includes various mathematical transformations and substitutions that may have limitations based on the chosen methods.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the constants $$a,\;b, \;c,\; d$$ such that

$$4x^3-3x+\frac{\sqrt{3}}{2}=a(x-b)(x-c)(x-d)$$.
 
Mathematics news on Phys.org
Using the triple-angle identity for cosine:

(1) $\displaystyle \cos(3\theta)=4\cos^3(\theta)-3\cos(\theta)$

we may solve the cubic equation:

(2) $\displaystyle 8x^3-6x+\sqrt{3}=0$

To transform equation (2) into a form where the stated identity (1) is useful, we make the substitution $x=a\cos(\theta)$, where $a$ is a constant to be determined. With this substitution, equation (2) can be written:

(3) $\displaystyle 8a^3\cos^3(\theta)-6a\cos(\theta)=-\sqrt{3}$

In equation (3), the coefficient of $\cos^3(\theta)$ is $8a^3$. Since we want this coefficient to be $4$ [as it is in equation (1)], we divide both sides of equation (3) by $2a^3$ to obtain:

(4) $\displaystyle 4\cos^3(\theta)-\frac{3}{a^2}\cos(\theta)=-\frac{\sqrt{3}}{2a^3}$

Next, a comparison of equations (4) and (1) leads us to require that $\displaystyle \frac{3}{a^2}=3$. Thus, $a=\pm1$. For convenience, we choose $a=1$; equation (4) then becomes:

(5) $\displaystyle 4\cos^3(\theta)-3\cos(\theta)=-\frac{\sqrt{3}}{2}$

Comparing equation (5) with the identity in (1) leads us to the equation:

$\displaystyle \cos(3\theta)=-\frac{\sqrt{3}}{2}$

The solutions here are of the form:

$\displaystyle 3\theta=\frac{\pi}{6}(12k+5),\,\frac{\pi}{6}(12k+7)$

$\displaystyle \theta=\frac{\pi}{18}(12k+5),\,\frac{\pi}{18}(12k+7)$

Only 3 of these angles yield distinct values of $\cos(\theta)$, namely:

$\displaystyle \theta=\frac{5\pi}{18},\,\frac{7\pi}{18},\,\frac{17\pi}{18}$

Thus, the solutions of the equation in (2) are:

$\displaystyle x=\cos\left(\frac{5\pi}{18} \right),\,\cos\left(\frac{7\pi}{18} \right),\,\cos\left(\frac{17\pi}{18} \right)$

Hence, $a=4$, and $(b,c,d)$ can be any of the six permutations of the 3 roots listed above.
 
Hi MarkFL, thanks for participating and your answer is correct!:D

Hey, I'm impressed at how fast you were in replying to this problem!:cool:
 
I struggled at first with Vieta, but then I recalled that this is quite similar to the High School POTW that I submitted for use on 9 June, and so I copied and pasted the solution I had provided, made a few changes, and had it solved. (Angel)
 
anemone said:
Find the constants $$a,\;b, \;c,\; d$$ such that

$$4x^3-3x+\frac{\sqrt{3}}{2}=a(x-b)(x-c)(x-d)$$.
Clearly $a=4$. For the rest ... [sp]$\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$, so if we put $x=\cos\theta$ then the equation $4x^3-3x+\tfrac{\sqrt{3}}{2}=0$ becomes $\cos(3\theta) = -\tfrac{\sqrt3}2 = \cos150^\circ$, with solutions $\theta = 50^\circ,\;170^\circ,\;290^\circ$ or, if you prefer, $50^\circ,\;70^\circ,\;170^\circ$. Thus we can take $b= \cos50^\circ$, $c = \cos70^\circ$, $d = -\cos10^\circ$.[/sp]

Edit. Sorry! I took so long writing this that I failed to see that Mark had already replied.
 
Last edited:
anemone said:
Find the constants $$a,\;b, \;c,\; d$$ such that

$$4x^3-3x+\frac{\sqrt{3}}{2}=a(x-b)(x-c)(x-d)$$.

[math]\displaystyle \begin{align*} a\left( x-b \right) \left( x-c\right) \left( x-d \right) = a \, x^3 - \left( a\,b + a\,c + a\,d \right) x^2 + \left( a\,b\,c + a\,b\,d + a\,c\,d \right) x - a\,b\,c\,d \end{align*}[/math]

Equating the like powers of x we find

[math]\displaystyle \begin{align*} a &= 4 \\ \\ - \left( 4b + 4c + 4d \right) &= 0 \\ b + c + d &= 0 \\ \\ 4\,b\,c + 4\,b\,d + 4\,c\,d &= -3 \\ b\,c + b\,d + c\,d &= -\frac{3}{4} \\ \\ 4\,b\,c\,d &= \frac{\sqrt{3}}{2} \\ b\,c\,d &= \frac{\sqrt{3}}{8} \end{align*}[/math]

Rearranging the first equation we have [math]\displaystyle \begin{align*} b = -c - d \end{align*}[/math] and substituting into the second equation we find

[math]\displaystyle \begin{align*} \left( - c - d \right) c + \left( -c - d \right) d + c\,d &= -\frac{3}{4} \\ -c^2 - c\,d - c\,d - d^2 + c\,d &= -\frac{3}{4} \\ c^2 + c\,d + d^2 &= \frac{3}{4} \\ c^2 + c\,d + \left( \frac{d}{2} \right) ^2 - \left( \frac{d}{2} \right) ^2 + d^2 &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 + \frac{3d^2}{4} &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 &= \frac{ 3 - 3d }{4} \\ c + \frac{d}{2} &= \frac{ \pm \sqrt{ 3 - 3d }}{2} \\ c &= \frac{-d \pm \sqrt{ 3 - 3d } }{2} \end{align*}[/math]

and so [math]\displaystyle \begin{align*} b = - \left( \frac{-d \pm \sqrt{ 3 - 3d }}{2} \right) - d = \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \end{align*}[/math]

Substituting into the final equation, we find

[math]\displaystyle \begin{align*} \left( \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \right) \left( \frac{-d \pm \sqrt{ 3 - 3d } }{2} \right) d &= \frac{\sqrt{3}}{8} \\ \left( -d \mp \sqrt{ 3 - 3d} \right) \left( -d \pm \sqrt{ 3 - 3d } \right) d &= \frac{\sqrt{3}}{2} \\ \left[ d^2 - \left( 3 - 3d \right) \right] d &= \frac{\sqrt{3}}{2} \\ d^3 + 3d^2 - 3d - \frac{\sqrt{3}}{2} &= 0 \end{align*}[/math]

Now making the change of variable [math]\displaystyle \begin{align*} u = d + 1 \end{align*}[/math], we find

[math]\displaystyle \begin{align*} \left( u - 1 \right) ^3 + 3 \left( u - 1 \right) ^2 - 3 \left( u - 1 \right) - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 3u^2 + 3u - 1 + 3u^2 - 6u + 3 - 3u + 3 - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 6u - \frac{\sqrt{3} - 10}{2} &= 0 \end{align*}[/math]

and now applying the Cubic Formula, we have

[math]\displaystyle \begin{align*} u &= \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} + \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } + \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} - \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } \\ &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d + 1 &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } - 1 \end{align*}[/math]

Back-substituting will enable us to evaluate b and c.
 
I have always liked Cardano's method that I learned a long long time ago from a book of my father. Since I still have fond sentimental memories of it, I'm presenting it as well.

We can write the cubic expression in equation form as:
$$x^3 - \frac 3 4 x + \frac {\sqrt 3} 8 = 0 \qquad (1)$$
We substitute
$$x=y+z \qquad\qquad (2)$$
giving us a free choice for either $y$ or $z$:
\begin{array}{lcl}
(y+z)^3 - \frac 3 4 (y+z) + \frac {\sqrt 3} 8
&=&(y^3+z^3) + (3y^2z+3yz^2) - \frac 3 4 (y+z) + \frac {\sqrt 3} 8 = 0 \\
&=&(y^3+z^3) + \left(3yz - \frac 3 4\right)(y+z) + \frac {\sqrt 3} 8
\end{array}
Now we make our choice for z such that $3yz - \frac 3 4 = 0$, which will make the second term vanish.
That is, we substitute:
$$z = \frac 1 {4y} \qquad\qquad (3)$$
The result is:
\begin{array}{lcl}
(y^3+\frac 1 {4^3 y^3}) + \frac {\sqrt 3} 8 &=& 0 \\
y^6 + \frac {\sqrt 3} 8 y^3 + \frac 1 {4^3} &=& 0
\end{array}
Solving the equivalent quadratic equation gives:
$$y^3 = \frac 1 8 \left(-\frac 12 \sqrt 3 \pm \frac 1 2 i\right) = \frac 1 8 \exp\left(\pm \frac 5 6 \pi i\right)$$
The corresponding solutions are:
$$y=\frac 1 2 \exp\left(\pm \frac 5 {18} \pi i\right), \quad \frac 1 2 \exp\left(\pm \frac {17} {18} \pi i\right), \quad\frac 1 2 \exp\left(\pm \frac {29} {18} \pi i\right)$$
Substituting in (3) gives us:
$$z=\frac 1 2 \exp\left(\mp \frac 5 {18} \pi i\right), \quad\frac 1 2 \exp\left(\mp \frac {17} {18} \pi i\right), \quad\frac 1 2 \exp\left(\mp \frac {29} {18} \pi i\right)$$
In other words, in each case we have $z=\bar y$.
As a result, from (2) we find $x=y+z=y+\bar y=2\Re (y)$, meaning:
$$x=\cos\left( \frac 5 {18} \pi\right), \quad\cos\left( \frac {17} {18} \pi\right), \quad\cos\left( \frac {29} {18} \pi\right)$$

Therefore the solution is
$$a=4, \quad b= \cos\left( \frac 5 {18} \pi\right), \quad c=\cos\left( \frac {17} {18} \pi\right), \quad d=\cos\left( \frac {29} {18} \pi\right). \qquad \blacksquare$$
 
Last edited:
Opalg said:
Clearly $a=4$. For the rest ... [sp]$\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$, so if we put $x=\cos\theta$ then the equation $4x^3-3x+\tfrac{\sqrt{3}}{2}=0$ becomes $\cos(3\theta) = -\tfrac{\sqrt3}2 = \cos150^\circ$, with solutions $\theta = 50^\circ,\;170^\circ,\;290^\circ$ or, if you prefer, $50^\circ,\;70^\circ,\;170^\circ$. Thus we can take $b= \cos50^\circ$, $c = \cos70^\circ$, $d = -\cos10^\circ$.[/sp]

Edit. Sorry! I took so long writing this that I failed to see that Mark had already replied.

Hi Opalg, don't be sorry because I bet you have no idea how much I hope you would reply to all of my challenge problems!:o:D

kaliprasad said:

Hi kaliprasad, hmm...so, that blog is yours? Thanks for sharing it with us and I've checked it out and found that you have quite a collection of interesting problems in your blog! My hearty wishes for your blogging success!:)

Prove It said:
[math]\displaystyle \begin{align*} a\left( x-b \right) \left( x-c\right) \left( x-d \right) = a \, x^3 - \left( a\,b + a\,c + a\,d \right) x^2 + \left( a\,b\,c + a\,b\,d + a\,c\,d \right) x - a\,b\,c\,d \end{align*}[/math]

Equating the like powers of x we find

[math]\displaystyle \begin{align*} a &= 4 \\ \\ - \left( 4b + 4c + 4d \right) &= 0 \\ b + c + d &= 0 \\ \\ 4\,b\,c + 4\,b\,d + 4\,c\,d &= -3 \\ b\,c + b\,d + c\,d &= -\frac{3}{4} \\ \\ 4\,b\,c\,d &= \frac{\sqrt{3}}{2} \\ b\,c\,d &= \frac{\sqrt{3}}{8} \end{align*}[/math]

Rearranging the first equation we have [math]\displaystyle \begin{align*} b = -c - d \end{align*}[/math] and substituting into the second equation we find

[math]\displaystyle \begin{align*} \left( - c - d \right) c + \left( -c - d \right) d + c\,d &= -\frac{3}{4} \\ -c^2 - c\,d - c\,d - d^2 + c\,d &= -\frac{3}{4} \\ c^2 + c\,d + d^2 &= \frac{3}{4} \\ c^2 + c\,d + \left( \frac{d}{2} \right) ^2 - \left( \frac{d}{2} \right) ^2 + d^2 &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 + \frac{3d^2}{4} &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 &= \frac{ 3 - 3d }{4} \\ c + \frac{d}{2} &= \frac{ \pm \sqrt{ 3 - 3d }}{2} \\ c &= \frac{-d \pm \sqrt{ 3 - 3d } }{2} \end{align*}[/math]

and so [math]\displaystyle \begin{align*} b = - \left( \frac{-d \pm \sqrt{ 3 - 3d }}{2} \right) - d = \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \end{align*}[/math]

Substituting into the final equation, we find

[math]\displaystyle \begin{align*} \left( \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \right) \left( \frac{-d \pm \sqrt{ 3 - 3d } }{2} \right) d &= \frac{\sqrt{3}}{8} \\ \left( -d \mp \sqrt{ 3 - 3d} \right) \left( -d \pm \sqrt{ 3 - 3d } \right) d &= \frac{\sqrt{3}}{2} \\ \left[ d^2 - \left( 3 - 3d \right) \right] d &= \frac{\sqrt{3}}{2} \\ d^3 + 3d^2 - 3d - \frac{\sqrt{3}}{2} &= 0 \end{align*}[/math]

Now making the change of variable [math]\displaystyle \begin{align*} u = d + 1 \end{align*}[/math], we find

[math]\displaystyle \begin{align*} \left( u - 1 \right) ^3 + 3 \left( u - 1 \right) ^2 - 3 \left( u - 1 \right) - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 3u^2 + 3u - 1 + 3u^2 - 6u + 3 - 3u + 3 - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 6u - \frac{\sqrt{3} - 10}{2} &= 0 \end{align*}[/math]

and now applying the Cubic Formula, we have

[math]\displaystyle \begin{align*} u &= \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} + \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } + \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} - \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } \\ &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d + 1 &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } - 1 \end{align*}[/math]

Back-substituting will enable us to evaluate b and c.

Hi Prove It, thanks for providing us this neat and well written solution and I appreciate that you took the time to participate in this problem.:)

I like Serena said:
I have always liked Cardano's method that I learned a long long time ago from a book of my father. Since I still have fond sentimental memories of it, I'm presenting it as well.

We can write the cubic expression in equation form as:
$$x^3 - \frac 3 4 x + \frac {\sqrt 3} 8 = 0 \qquad (1)$$
We substitute
$$x=y+z \qquad\qquad (2)$$
giving us a free choice for either $y$ or $z$:
\begin{array}{lcl}
(y+z)^3 - \frac 3 4 (y+z) + \frac {\sqrt 3} 8
&=&(y^3+z^3) + (3y^2z+3yz^2) - \frac 3 4 (y+z) + \frac {\sqrt 3} 8 = 0 \\
&=&(y^3+z^3) + \left(3yz - \frac 3 4\right)(y+z) + \frac {\sqrt 3} 8
\end{array}
Now we make our choice for z such that $3yz - \frac 3 4 = 0$, which will make the second term vanish.
That is, we substitute:
$$z = \frac 1 {4y} \qquad\qquad (3)$$
The result is:
\begin{array}{lcl}
(y^3+\frac 1 {4^3 y^3}) + \frac {\sqrt 3} 8 &=& 0 \\
y^6 + \frac {\sqrt 3} 8 y^3 + \frac 1 {4^3} &=& 0
\end{array}
Solving the equivalent quadratic equation gives:
$$y^3 = \frac 1 8 \left(-\frac 12 \sqrt 3 \pm \frac 1 2 i\right) = \frac 1 8 \exp\left(\pm \frac 5 6 \pi i\right)$$
The corresponding solutions are:
$$y=\frac 1 2 \exp\left(\pm \frac 5 {18} \pi i\right), \quad \frac 1 2 \exp\left(\pm \frac {17} {18} \pi i\right), \quad\frac 1 2 \exp\left(\pm \frac {29} {18} \pi i\right)$$
Substituting in (3) gives us:
$$z=\frac 1 2 \exp\left(\mp \frac 5 {18} \pi i\right), \quad\frac 1 2 \exp\left(\mp \frac {17} {18} \pi i\right), \quad\frac 1 2 \exp\left(\mp \frac {29} {18} \pi i\right)$$
In other words, in each case we have $z=\bar y$.
As a result, from (2) we find $x=y+z=y+\bar y=2\Re (y)$, meaning:
$$x=\cos\left( \frac 5 {18} \pi\right), \quad\cos\left( \frac {17} {18} \pi\right), \quad\cos\left( \frac {29} {18} \pi\right)$$

Therefore the solution is
$$a=4, \quad b= \cos\left( \frac 5 {18} \pi\right), \quad c=\cos\left( \frac {17} {18} \pi\right), \quad d=\cos\left( \frac {29} {18} \pi\right). \qquad \blacksquare$$

Hi I like Serena, WOW! Thank you kindly for this piece of well thought out strategic plan to tackle this cubic function!

I am so happy that all of you so generously shared the different approaches to solve this problem with me!

I love you guys!(Nerd)
 
  • #10
Hi kaliprasad, hmm...so, that blog is yours? Thanks for sharing it with us and I've checked it out and found that you have quite a collection of interesting problems in your blog! My hearty wishes for your blogging success!:)

Yes. The blog is mine and thanks for wishing me blogging success!
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
9
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K