Can You Match Constants to This Cubic Polynomial?

Click For Summary
SUMMARY

The discussion focuses on finding constants \(a\), \(b\), \(c\), and \(d\) for the cubic polynomial equation \(4x^3 - 3x + \frac{\sqrt{3}}{2} = a(x-b)(x-c)(x-d)\). The solution establishes that \(a = 4\) and utilizes the triple-angle identity for cosine to derive the roots. The roots are expressed as \(b = \cos\left(\frac{5\pi}{18}\right)\), \(c = \cos\left(\frac{7\pi}{18}\right)\), and \(d = \cos\left(\frac{17\pi}{18}\right)\), with all permutations of these values being valid. The discussion also highlights the use of Cardano's method for solving cubic equations.

PREREQUISITES
  • Understanding of cubic polynomial equations
  • Familiarity with trigonometric identities, specifically the triple-angle identity for cosine
  • Knowledge of Cardano's method for solving cubic equations
  • Basic skills in algebraic manipulation and substitution
NEXT STEPS
  • Study the application of the triple-angle identity in solving polynomial equations
  • Learn about Cardano's method for solving cubic equations in detail
  • Explore the relationship between trigonometric functions and polynomial roots
  • Investigate the implications of root permutations in polynomial equations
USEFUL FOR

Mathematicians, students studying algebra and trigonometry, and anyone interested in solving cubic equations using trigonometric identities and advanced algebraic methods.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the constants $$a,\;b, \;c,\; d$$ such that

$$4x^3-3x+\frac{\sqrt{3}}{2}=a(x-b)(x-c)(x-d)$$.
 
Mathematics news on Phys.org
Using the triple-angle identity for cosine:

(1) $\displaystyle \cos(3\theta)=4\cos^3(\theta)-3\cos(\theta)$

we may solve the cubic equation:

(2) $\displaystyle 8x^3-6x+\sqrt{3}=0$

To transform equation (2) into a form where the stated identity (1) is useful, we make the substitution $x=a\cos(\theta)$, where $a$ is a constant to be determined. With this substitution, equation (2) can be written:

(3) $\displaystyle 8a^3\cos^3(\theta)-6a\cos(\theta)=-\sqrt{3}$

In equation (3), the coefficient of $\cos^3(\theta)$ is $8a^3$. Since we want this coefficient to be $4$ [as it is in equation (1)], we divide both sides of equation (3) by $2a^3$ to obtain:

(4) $\displaystyle 4\cos^3(\theta)-\frac{3}{a^2}\cos(\theta)=-\frac{\sqrt{3}}{2a^3}$

Next, a comparison of equations (4) and (1) leads us to require that $\displaystyle \frac{3}{a^2}=3$. Thus, $a=\pm1$. For convenience, we choose $a=1$; equation (4) then becomes:

(5) $\displaystyle 4\cos^3(\theta)-3\cos(\theta)=-\frac{\sqrt{3}}{2}$

Comparing equation (5) with the identity in (1) leads us to the equation:

$\displaystyle \cos(3\theta)=-\frac{\sqrt{3}}{2}$

The solutions here are of the form:

$\displaystyle 3\theta=\frac{\pi}{6}(12k+5),\,\frac{\pi}{6}(12k+7)$

$\displaystyle \theta=\frac{\pi}{18}(12k+5),\,\frac{\pi}{18}(12k+7)$

Only 3 of these angles yield distinct values of $\cos(\theta)$, namely:

$\displaystyle \theta=\frac{5\pi}{18},\,\frac{7\pi}{18},\,\frac{17\pi}{18}$

Thus, the solutions of the equation in (2) are:

$\displaystyle x=\cos\left(\frac{5\pi}{18} \right),\,\cos\left(\frac{7\pi}{18} \right),\,\cos\left(\frac{17\pi}{18} \right)$

Hence, $a=4$, and $(b,c,d)$ can be any of the six permutations of the 3 roots listed above.
 
Hi MarkFL, thanks for participating and your answer is correct!:D

Hey, I'm impressed at how fast you were in replying to this problem!:cool:
 
I struggled at first with Vieta, but then I recalled that this is quite similar to the High School POTW that I submitted for use on 9 June, and so I copied and pasted the solution I had provided, made a few changes, and had it solved. (Angel)
 
anemone said:
Find the constants $$a,\;b, \;c,\; d$$ such that

$$4x^3-3x+\frac{\sqrt{3}}{2}=a(x-b)(x-c)(x-d)$$.
Clearly $a=4$. For the rest ... [sp]$\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$, so if we put $x=\cos\theta$ then the equation $4x^3-3x+\tfrac{\sqrt{3}}{2}=0$ becomes $\cos(3\theta) = -\tfrac{\sqrt3}2 = \cos150^\circ$, with solutions $\theta = 50^\circ,\;170^\circ,\;290^\circ$ or, if you prefer, $50^\circ,\;70^\circ,\;170^\circ$. Thus we can take $b= \cos50^\circ$, $c = \cos70^\circ$, $d = -\cos10^\circ$.[/sp]

Edit. Sorry! I took so long writing this that I failed to see that Mark had already replied.
 
Last edited:
anemone said:
Find the constants $$a,\;b, \;c,\; d$$ such that

$$4x^3-3x+\frac{\sqrt{3}}{2}=a(x-b)(x-c)(x-d)$$.

[math]\displaystyle \begin{align*} a\left( x-b \right) \left( x-c\right) \left( x-d \right) = a \, x^3 - \left( a\,b + a\,c + a\,d \right) x^2 + \left( a\,b\,c + a\,b\,d + a\,c\,d \right) x - a\,b\,c\,d \end{align*}[/math]

Equating the like powers of x we find

[math]\displaystyle \begin{align*} a &= 4 \\ \\ - \left( 4b + 4c + 4d \right) &= 0 \\ b + c + d &= 0 \\ \\ 4\,b\,c + 4\,b\,d + 4\,c\,d &= -3 \\ b\,c + b\,d + c\,d &= -\frac{3}{4} \\ \\ 4\,b\,c\,d &= \frac{\sqrt{3}}{2} \\ b\,c\,d &= \frac{\sqrt{3}}{8} \end{align*}[/math]

Rearranging the first equation we have [math]\displaystyle \begin{align*} b = -c - d \end{align*}[/math] and substituting into the second equation we find

[math]\displaystyle \begin{align*} \left( - c - d \right) c + \left( -c - d \right) d + c\,d &= -\frac{3}{4} \\ -c^2 - c\,d - c\,d - d^2 + c\,d &= -\frac{3}{4} \\ c^2 + c\,d + d^2 &= \frac{3}{4} \\ c^2 + c\,d + \left( \frac{d}{2} \right) ^2 - \left( \frac{d}{2} \right) ^2 + d^2 &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 + \frac{3d^2}{4} &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 &= \frac{ 3 - 3d }{4} \\ c + \frac{d}{2} &= \frac{ \pm \sqrt{ 3 - 3d }}{2} \\ c &= \frac{-d \pm \sqrt{ 3 - 3d } }{2} \end{align*}[/math]

and so [math]\displaystyle \begin{align*} b = - \left( \frac{-d \pm \sqrt{ 3 - 3d }}{2} \right) - d = \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \end{align*}[/math]

Substituting into the final equation, we find

[math]\displaystyle \begin{align*} \left( \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \right) \left( \frac{-d \pm \sqrt{ 3 - 3d } }{2} \right) d &= \frac{\sqrt{3}}{8} \\ \left( -d \mp \sqrt{ 3 - 3d} \right) \left( -d \pm \sqrt{ 3 - 3d } \right) d &= \frac{\sqrt{3}}{2} \\ \left[ d^2 - \left( 3 - 3d \right) \right] d &= \frac{\sqrt{3}}{2} \\ d^3 + 3d^2 - 3d - \frac{\sqrt{3}}{2} &= 0 \end{align*}[/math]

Now making the change of variable [math]\displaystyle \begin{align*} u = d + 1 \end{align*}[/math], we find

[math]\displaystyle \begin{align*} \left( u - 1 \right) ^3 + 3 \left( u - 1 \right) ^2 - 3 \left( u - 1 \right) - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 3u^2 + 3u - 1 + 3u^2 - 6u + 3 - 3u + 3 - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 6u - \frac{\sqrt{3} - 10}{2} &= 0 \end{align*}[/math]

and now applying the Cubic Formula, we have

[math]\displaystyle \begin{align*} u &= \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} + \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } + \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} - \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } \\ &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d + 1 &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } - 1 \end{align*}[/math]

Back-substituting will enable us to evaluate b and c.
 
I have always liked Cardano's method that I learned a long long time ago from a book of my father. Since I still have fond sentimental memories of it, I'm presenting it as well.

We can write the cubic expression in equation form as:
$$x^3 - \frac 3 4 x + \frac {\sqrt 3} 8 = 0 \qquad (1)$$
We substitute
$$x=y+z \qquad\qquad (2)$$
giving us a free choice for either $y$ or $z$:
\begin{array}{lcl}
(y+z)^3 - \frac 3 4 (y+z) + \frac {\sqrt 3} 8
&=&(y^3+z^3) + (3y^2z+3yz^2) - \frac 3 4 (y+z) + \frac {\sqrt 3} 8 = 0 \\
&=&(y^3+z^3) + \left(3yz - \frac 3 4\right)(y+z) + \frac {\sqrt 3} 8
\end{array}
Now we make our choice for z such that $3yz - \frac 3 4 = 0$, which will make the second term vanish.
That is, we substitute:
$$z = \frac 1 {4y} \qquad\qquad (3)$$
The result is:
\begin{array}{lcl}
(y^3+\frac 1 {4^3 y^3}) + \frac {\sqrt 3} 8 &=& 0 \\
y^6 + \frac {\sqrt 3} 8 y^3 + \frac 1 {4^3} &=& 0
\end{array}
Solving the equivalent quadratic equation gives:
$$y^3 = \frac 1 8 \left(-\frac 12 \sqrt 3 \pm \frac 1 2 i\right) = \frac 1 8 \exp\left(\pm \frac 5 6 \pi i\right)$$
The corresponding solutions are:
$$y=\frac 1 2 \exp\left(\pm \frac 5 {18} \pi i\right), \quad \frac 1 2 \exp\left(\pm \frac {17} {18} \pi i\right), \quad\frac 1 2 \exp\left(\pm \frac {29} {18} \pi i\right)$$
Substituting in (3) gives us:
$$z=\frac 1 2 \exp\left(\mp \frac 5 {18} \pi i\right), \quad\frac 1 2 \exp\left(\mp \frac {17} {18} \pi i\right), \quad\frac 1 2 \exp\left(\mp \frac {29} {18} \pi i\right)$$
In other words, in each case we have $z=\bar y$.
As a result, from (2) we find $x=y+z=y+\bar y=2\Re (y)$, meaning:
$$x=\cos\left( \frac 5 {18} \pi\right), \quad\cos\left( \frac {17} {18} \pi\right), \quad\cos\left( \frac {29} {18} \pi\right)$$

Therefore the solution is
$$a=4, \quad b= \cos\left( \frac 5 {18} \pi\right), \quad c=\cos\left( \frac {17} {18} \pi\right), \quad d=\cos\left( \frac {29} {18} \pi\right). \qquad \blacksquare$$
 
Last edited:
Opalg said:
Clearly $a=4$. For the rest ... [sp]$\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$, so if we put $x=\cos\theta$ then the equation $4x^3-3x+\tfrac{\sqrt{3}}{2}=0$ becomes $\cos(3\theta) = -\tfrac{\sqrt3}2 = \cos150^\circ$, with solutions $\theta = 50^\circ,\;170^\circ,\;290^\circ$ or, if you prefer, $50^\circ,\;70^\circ,\;170^\circ$. Thus we can take $b= \cos50^\circ$, $c = \cos70^\circ$, $d = -\cos10^\circ$.[/sp]

Edit. Sorry! I took so long writing this that I failed to see that Mark had already replied.

Hi Opalg, don't be sorry because I bet you have no idea how much I hope you would reply to all of my challenge problems!:o:D

kaliprasad said:

Hi kaliprasad, hmm...so, that blog is yours? Thanks for sharing it with us and I've checked it out and found that you have quite a collection of interesting problems in your blog! My hearty wishes for your blogging success!:)

Prove It said:
[math]\displaystyle \begin{align*} a\left( x-b \right) \left( x-c\right) \left( x-d \right) = a \, x^3 - \left( a\,b + a\,c + a\,d \right) x^2 + \left( a\,b\,c + a\,b\,d + a\,c\,d \right) x - a\,b\,c\,d \end{align*}[/math]

Equating the like powers of x we find

[math]\displaystyle \begin{align*} a &= 4 \\ \\ - \left( 4b + 4c + 4d \right) &= 0 \\ b + c + d &= 0 \\ \\ 4\,b\,c + 4\,b\,d + 4\,c\,d &= -3 \\ b\,c + b\,d + c\,d &= -\frac{3}{4} \\ \\ 4\,b\,c\,d &= \frac{\sqrt{3}}{2} \\ b\,c\,d &= \frac{\sqrt{3}}{8} \end{align*}[/math]

Rearranging the first equation we have [math]\displaystyle \begin{align*} b = -c - d \end{align*}[/math] and substituting into the second equation we find

[math]\displaystyle \begin{align*} \left( - c - d \right) c + \left( -c - d \right) d + c\,d &= -\frac{3}{4} \\ -c^2 - c\,d - c\,d - d^2 + c\,d &= -\frac{3}{4} \\ c^2 + c\,d + d^2 &= \frac{3}{4} \\ c^2 + c\,d + \left( \frac{d}{2} \right) ^2 - \left( \frac{d}{2} \right) ^2 + d^2 &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 + \frac{3d^2}{4} &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 &= \frac{ 3 - 3d }{4} \\ c + \frac{d}{2} &= \frac{ \pm \sqrt{ 3 - 3d }}{2} \\ c &= \frac{-d \pm \sqrt{ 3 - 3d } }{2} \end{align*}[/math]

and so [math]\displaystyle \begin{align*} b = - \left( \frac{-d \pm \sqrt{ 3 - 3d }}{2} \right) - d = \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \end{align*}[/math]

Substituting into the final equation, we find

[math]\displaystyle \begin{align*} \left( \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \right) \left( \frac{-d \pm \sqrt{ 3 - 3d } }{2} \right) d &= \frac{\sqrt{3}}{8} \\ \left( -d \mp \sqrt{ 3 - 3d} \right) \left( -d \pm \sqrt{ 3 - 3d } \right) d &= \frac{\sqrt{3}}{2} \\ \left[ d^2 - \left( 3 - 3d \right) \right] d &= \frac{\sqrt{3}}{2} \\ d^3 + 3d^2 - 3d - \frac{\sqrt{3}}{2} &= 0 \end{align*}[/math]

Now making the change of variable [math]\displaystyle \begin{align*} u = d + 1 \end{align*}[/math], we find

[math]\displaystyle \begin{align*} \left( u - 1 \right) ^3 + 3 \left( u - 1 \right) ^2 - 3 \left( u - 1 \right) - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 3u^2 + 3u - 1 + 3u^2 - 6u + 3 - 3u + 3 - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 6u - \frac{\sqrt{3} - 10}{2} &= 0 \end{align*}[/math]

and now applying the Cubic Formula, we have

[math]\displaystyle \begin{align*} u &= \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} + \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } + \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} - \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } \\ &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d + 1 &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } - 1 \end{align*}[/math]

Back-substituting will enable us to evaluate b and c.

Hi Prove It, thanks for providing us this neat and well written solution and I appreciate that you took the time to participate in this problem.:)

I like Serena said:
I have always liked Cardano's method that I learned a long long time ago from a book of my father. Since I still have fond sentimental memories of it, I'm presenting it as well.

We can write the cubic expression in equation form as:
$$x^3 - \frac 3 4 x + \frac {\sqrt 3} 8 = 0 \qquad (1)$$
We substitute
$$x=y+z \qquad\qquad (2)$$
giving us a free choice for either $y$ or $z$:
\begin{array}{lcl}
(y+z)^3 - \frac 3 4 (y+z) + \frac {\sqrt 3} 8
&=&(y^3+z^3) + (3y^2z+3yz^2) - \frac 3 4 (y+z) + \frac {\sqrt 3} 8 = 0 \\
&=&(y^3+z^3) + \left(3yz - \frac 3 4\right)(y+z) + \frac {\sqrt 3} 8
\end{array}
Now we make our choice for z such that $3yz - \frac 3 4 = 0$, which will make the second term vanish.
That is, we substitute:
$$z = \frac 1 {4y} \qquad\qquad (3)$$
The result is:
\begin{array}{lcl}
(y^3+\frac 1 {4^3 y^3}) + \frac {\sqrt 3} 8 &=& 0 \\
y^6 + \frac {\sqrt 3} 8 y^3 + \frac 1 {4^3} &=& 0
\end{array}
Solving the equivalent quadratic equation gives:
$$y^3 = \frac 1 8 \left(-\frac 12 \sqrt 3 \pm \frac 1 2 i\right) = \frac 1 8 \exp\left(\pm \frac 5 6 \pi i\right)$$
The corresponding solutions are:
$$y=\frac 1 2 \exp\left(\pm \frac 5 {18} \pi i\right), \quad \frac 1 2 \exp\left(\pm \frac {17} {18} \pi i\right), \quad\frac 1 2 \exp\left(\pm \frac {29} {18} \pi i\right)$$
Substituting in (3) gives us:
$$z=\frac 1 2 \exp\left(\mp \frac 5 {18} \pi i\right), \quad\frac 1 2 \exp\left(\mp \frac {17} {18} \pi i\right), \quad\frac 1 2 \exp\left(\mp \frac {29} {18} \pi i\right)$$
In other words, in each case we have $z=\bar y$.
As a result, from (2) we find $x=y+z=y+\bar y=2\Re (y)$, meaning:
$$x=\cos\left( \frac 5 {18} \pi\right), \quad\cos\left( \frac {17} {18} \pi\right), \quad\cos\left( \frac {29} {18} \pi\right)$$

Therefore the solution is
$$a=4, \quad b= \cos\left( \frac 5 {18} \pi\right), \quad c=\cos\left( \frac {17} {18} \pi\right), \quad d=\cos\left( \frac {29} {18} \pi\right). \qquad \blacksquare$$

Hi I like Serena, WOW! Thank you kindly for this piece of well thought out strategic plan to tackle this cubic function!

I am so happy that all of you so generously shared the different approaches to solve this problem with me!

I love you guys!(Nerd)
 
  • #10
Hi kaliprasad, hmm...so, that blog is yours? Thanks for sharing it with us and I've checked it out and found that you have quite a collection of interesting problems in your blog! My hearty wishes for your blogging success!:)

Yes. The blog is mine and thanks for wishing me blogging success!
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
9
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K