MHB Can You Prove $6^{33}>3^{33}+4^{33}+5^{33}?

Click For Summary
The discussion centers on proving the inequality $6^{33} > 3^{33} + 4^{33} + 5^{33}$. Participants utilize the binomial expansion to demonstrate that the terms derived from $(1+x)^{33}$ for specific values of x lead to inequalities that support the original claim. Specifically, they show that contributions from the terms involving $5^{33}$ exceed those from $4^{33}$ and $3^{33}$. The proof is confirmed to be valid, affirming the inequality. The conversation concludes with appreciation for the elegant proof provided by the contributors.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $6^{33}>3^{33}+4^{33}+5^{33}$.
 
Mathematics news on Phys.org
anemone said:
Prove that $6^{33}>3^{33}+4^{33}+5^{33}$.

We know $6^3 = 3^3 + 4^3 + 5^3$ as both sides are 216
Multiply by $6^{30}$ on both sides

$6^{33} = 6^{30}( 3^3 + 4^3 + 5^3)$
$= 6^{30}* 3^3 + 6^{30} * 4^3 + 6^{30} * 5^3$
$> 3^{30} * 3^3 + 4^{30} * 4^3 + 5 ^ {30} * 5^ 3$
$> 3^{33} + 4^{33} + 5^{ 33}$

as a matter of fact $6^n > 3^n + 4^n + 5^n$ for n > 3 (not even integer)
 
anemone said:
Prove that $6^{33}>3^{33}+4^{33}+5^{33}$.

[sp]Is...

$\displaystyle (1+x)^{33} = x^{33} + 33\ x^{32} + 33\ \cdot\ 16\ \cdot\ x^{31} + ...\ (1)$

... and for x=5...

$\displaystyle (1+5)^{33} = 5^{33} + 33\ 5^{32} + 33\ \cdot\ 16\ \cdot\ 5^{31} + ...\ (2)$

But...

$\displaystyle 33\ 5^{32} = \frac{33}{5}\ 5^{33} = \frac{33}{5}\ (\frac{5}{4})^{33}\ 4^{33} > 4^{33}\ (3)$

... and...

$\displaystyle 33\ \cdot 16\ \cdot 5^{31} = \frac{33}{25}\ \cdot 16\ \cdot 5^{33} = \frac{33}{25}\ \cdot 16\ \cdot (\frac{5}{3})^{33}\ \cdot 3^{33} > 3^{33}\ (4) $

... so that Your assumption is true...[/sp]

Kind regards

$\chi$ $\sigma$
 
Thank you both for participating and providing us the neat and elegant proof!:cool: Well done!(Sun)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K