Can You Prove $6^{33}>3^{33}+4^{33}+5^{33}?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The inequality $6^{33} > 3^{33} + 4^{33} + 5^{33}$ is proven using the binomial expansion of $(1+x)^{33}$. By substituting $x=5$, the terms $33 \cdot 5^{32}$ and $33 \cdot 16 \cdot 5^{31}$ are shown to exceed $4^{33}$ and $3^{33}$ respectively. This establishes that the original inequality holds true, confirming the assertion definitively.

PREREQUISITES
  • Understanding of binomial expansion
  • Familiarity with exponential functions
  • Basic algebraic manipulation skills
  • Knowledge of inequalities in mathematics
NEXT STEPS
  • Study binomial theorem applications in inequalities
  • Explore advanced topics in exponential growth
  • Learn about mathematical proofs and their structures
  • Investigate the properties of inequalities involving powers
USEFUL FOR

Mathematicians, educators, students studying advanced algebra, and anyone interested in proofs involving exponential inequalities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $6^{33}>3^{33}+4^{33}+5^{33}$.
 
Mathematics news on Phys.org
anemone said:
Prove that $6^{33}>3^{33}+4^{33}+5^{33}$.

We know $6^3 = 3^3 + 4^3 + 5^3$ as both sides are 216
Multiply by $6^{30}$ on both sides

$6^{33} = 6^{30}( 3^3 + 4^3 + 5^3)$
$= 6^{30}* 3^3 + 6^{30} * 4^3 + 6^{30} * 5^3$
$> 3^{30} * 3^3 + 4^{30} * 4^3 + 5 ^ {30} * 5^ 3$
$> 3^{33} + 4^{33} + 5^{ 33}$

as a matter of fact $6^n > 3^n + 4^n + 5^n$ for n > 3 (not even integer)
 
anemone said:
Prove that $6^{33}>3^{33}+4^{33}+5^{33}$.

[sp]Is...

$\displaystyle (1+x)^{33} = x^{33} + 33\ x^{32} + 33\ \cdot\ 16\ \cdot\ x^{31} + ...\ (1)$

... and for x=5...

$\displaystyle (1+5)^{33} = 5^{33} + 33\ 5^{32} + 33\ \cdot\ 16\ \cdot\ 5^{31} + ...\ (2)$

But...

$\displaystyle 33\ 5^{32} = \frac{33}{5}\ 5^{33} = \frac{33}{5}\ (\frac{5}{4})^{33}\ 4^{33} > 4^{33}\ (3)$

... and...

$\displaystyle 33\ \cdot 16\ \cdot 5^{31} = \frac{33}{25}\ \cdot 16\ \cdot 5^{33} = \frac{33}{25}\ \cdot 16\ \cdot (\frac{5}{3})^{33}\ \cdot 3^{33} > 3^{33}\ (4) $

... so that Your assumption is true...[/sp]

Kind regards

$\chi$ $\sigma$
 
Thank you both for participating and providing us the neat and elegant proof!:cool: Well done!(Sun)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K