MHB Can you prove that Triangle $ABC$ is Isosceles?

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Triangle $ABC$ has the following property: there is an interior point $P$ such that $\angle PAB=10^{\circ},\, \angle PBA=20^{\circ}, \angle PCA=30^{\circ}$, and $\angle PAC = 40^{\circ}$. Prove that triangle $ABC$ is isosceles.
 
Mathematics news on Phys.org
My solution:
Isosceles Triangle ABC.png
Let

i. $\triangle ABQ$ be an isosceles triangle where $\angle QAB=\angle QBA=20^{\circ}$ and the points $B, P$ and $Q$ are collinear and
ii. $\triangle ACR$ be another isosceles triangle where $\angle RAC=\angle RCA=30^{\circ}$ and the points $C, R$ and $P$ are collinear.

Consider $\triangle ABQ$, by applying the Sine Rule, we get
$\dfrac{AB}{\sin 140^{\circ}}=\dfrac{BQ}{\sin 20^{\circ}}\implies AB=2BQ\cos 20^{\circ}$

Now, in order to relate $AC$ in terms of $BQ$, we do the following:
$\dfrac{AC}{\sin 120^{\circ}}=\dfrac{AR}{\sin 30^{\circ}}\\ \dfrac{AR}{\sin 110^{\circ}}=\dfrac{AP}{\sin 60^{\circ}}\\ \dfrac{AP}{\sin 140^{\circ}}=\dfrac{AQ}{\sin 30^{\circ}}\\ \implies AC=\dfrac{\sin 120^{\circ}}{\sin 30^{\circ}}\dfrac{\sin 110^{\circ}}{\sin 60^{\circ}}\dfrac{\sin 140^{\circ}}{\sin 30^{\circ}}AQ=4\sin 70^{\circ}\sin 40^{\circ}BQ=4\cos 20^{\circ}\sin 40^{\circ}BQ$

Last, we consider $\triangle ABC$, by applying the Cosine Rule, we get
$\begin{align*}BC^2&=AB^2+AC^2-2ABAC\cos 50^{\circ}\\&=(2BQ\cos 20^{\circ})^2+(4\cos 20^{\circ}\sin 40^{\circ}BQ)^2-2(2BQ\cos 20^{\circ})(4\cos 20^{\circ}\sin 40^{\circ}BQ)\sin 40^{\circ}\\&=4BQ^2\cos^2 20^{\circ}(1+4\sin^2 40^{\circ}-4\sin^2 40^{\circ})\end{align*}\\ \therefore BC=2BQ\cos 20^{\circ}$

Hence, we have proved that $AB=BC\ne AC$ and that $\triangle ABC$ is isosceles.

Remark: I apologize for attaching a triangle that is so lacking in the labeling of the measure of angles. I wanted to use TiKZ to render my triangle initially but since we have disabled it (temporarily) in order to fix some other technical issue, and that I thought it was time to post solution to this challenge by now, it left me no choice but have to go ahead to use the far less than satisfactory diagram. But I hope it does justice to its purpose and let you make sense of my argument.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top