Can you prove the combinatorics challenge and find the value of |S_n-3T_n|?

Click For Summary

Discussion Overview

The discussion revolves around proving the combinatorial identity involving the sums \( S_n \) and \( T_n \), defined as \( S_n=\sum_{k=0}^{3n} {3n\choose k} \) and \( T_n=\sum_{k=0}^{n} {3n\choose 3k} \). Participants are tasked with demonstrating that \( |S_n-3T_n|=2 \).

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents the definitions of \( S_n \) and \( T_n \) and states the goal of proving \( |S_n-3T_n|=2 \).
  • Another participant proposes a solution involving the function \( f(x)=\sum_{k=0}^{3n}{3n\choose k}x^k \) and relates \( S_n \) and \( T_n \) through evaluations at complex cube roots of unity.
  • A later reply acknowledges the contributions of another participant and expresses appreciation for their solution approach, indicating a shared method in reasoning.

Areas of Agreement / Disagreement

Participants appear to share similar approaches to the problem, but there is no explicit consensus on the proof or resolution of the challenge presented.

Contextual Notes

The discussion does not clarify any assumptions or dependencies that may affect the proof, nor does it resolve any mathematical steps involved in the reasoning.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For $n=1,2,...,$ set $$S_n=\sum_{k=0}^{3n} {3n\choose k}$$ and $$T_n=\sum_{k=0}^{n} {3n\choose 3k}$$.

Prove that $|S_n-3T_n|=2$.
 
Physics news on Phys.org
My solution:

For the first sum, we may simply apply the binomial theorem to obtain the closed form:

$$S_n=\sum_{k=0}^{3n}{3n \choose k}=(1+1)^{3n}=8^n$$

For the second sum, I looked at the first 5 values:

$$T_1=2,\,T_2=22,\,T_3=170,\,T_4=1366,\,T_5=10922$$

and determined the recursion:

$$T_{n+1}=7T_{n}+8T_{n-1}$$

The characteristic equation for this recursion is:

$$r^2-7r-8=(r+1)(r-8)=0$$

and so the closed form is:

$$T_{n}=k_1(-1)^n+k_28^n$$

Using the initial values to determine the parameters, we may write:

$$T_{1}=-k_1+8k_2=2$$

$$T_{2}=k_1+64k_2=22$$

Adding the two equations, we find:

$$72k_2=24\implies k_2=\frac{1}{3}\implies k_1=\frac{2}{3}$$

Hence:

$$T_{n}=\frac{1}{3}\left(2(-1)^n+8^n \right)$$

And so we find:

$$\left|S_n-3T_n \right|=\left|8^n-3\left(\frac{1}{3}\left(2(-1)^n+8^n \right) \right) \right|=\left|8^n-2(-1)^n-8^n \right|=\left|2(-1)^{n+1} \right|=2$$

Shown as desired.
 
MarkFL said:
My solution:

For the first sum, we may simply apply the binomial theorem to obtain the closed form:

$$S_n=\sum_{k=0}^{3n}{3n \choose k}=(1+1)^{3n}=8^n$$

For the second sum, I looked at the first 5 values:

$$T_1=2,\,T_2=22,\,T_3=170,\,T_4=1366,\,T_5=10922$$

and determined the recursion:

$$T_{n+1}=7T_{n}+8T_{n-1}$$

The characteristic equation for this recursion is:

$$r^2-7r-8=(r+1)(r-8)=0$$

and so the closed form is:

$$T_{n}=k_1(-1)^n+k_28^n$$

Using the initial values to determine the parameters, we may write:

$$T_{1}=-k_1+8k_2=2$$

$$T_{2}=k_1+64k_2=22$$

Adding the two equations, we find:

$$72k_2=24\implies k_2=\frac{1}{3}\implies k_1=\frac{2}{3}$$

Hence:

$$T_{n}=\frac{1}{3}\left(2(-1)^n+8^n \right)$$

And so we find:

$$\left|S_n-3T_n \right|=\left|8^n-3\left(\frac{1}{3}\left(2(-1)^n+8^n \right) \right) \right|=\left|8^n-2(-1)^n-8^n \right|=\left|2(-1)^{n+1} \right|=2$$

Shown as desired.

Hey thanks for participating MarkFL! And I'm so impressed that you were so fast in cracking this problem!
 
anemone said:
For $n=1,2,...,$ set $$S_n=\sum_{k=0}^{3n} {3n\choose k}$$ and $$T_n=\sum_{k=0}^{n} {3n\choose 3k}$$.

Prove that $|S_n-3T_n|=2$.
Define $f(x)=\sum_{k=0}^{3n}{3n\choose k}x^k$.

Then $f(1)+f(\omega)+f(\omega^2)=3T_n$, where $\omega$ is a complex cube root of unity. Note that $f(1)=S_n$. So we get $S_n-3T_n=-[(1+\omega)^{3n}+(1+\omega^2)^{3n}]=-2$
 
caffeinemachine said:
Define $f(x)=\sum_{k=0}^{3n}{3n\choose k}x^k$.

Then $f(1)+f(\omega)+f(\omega^2)=3T_n$, where $\omega$ is a complex cube root of unity. Note that $f(1)=S_n$. So we get $S_n-3T_n=-[(1+\omega)^{3n}+(1+\omega^2)^{3n}]=-2$

Hi caffeinemachine,

Thanks for participating and I really appreciate you adding another good solution to this problem and my thought to solve this problem revolved around the idea that you used too!:)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 66 ·
3
Replies
66
Views
7K
  • · Replies 6 ·
Replies
6
Views
2K