MHB Can you prove the combinatorics challenge and find the value of |S_n-3T_n|?

AI Thread Summary
The discussion focuses on proving that |S_n - 3T_n| = 2, where S_n is the sum of binomial coefficients from 0 to 3n and T_n sums every third binomial coefficient up to n. A solution is presented using the function f(x) defined as the sum of binomial coefficients multiplied by x^k. By evaluating f at 1 and the complex cube roots of unity, it is shown that S_n - 3T_n simplifies to -2. The conversation highlights the collaborative effort in finding multiple solutions to the combinatorial challenge.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For $n=1,2,...,$ set $$S_n=\sum_{k=0}^{3n} {3n\choose k}$$ and $$T_n=\sum_{k=0}^{n} {3n\choose 3k}$$.

Prove that $|S_n-3T_n|=2$.
 
Mathematics news on Phys.org
My solution:

For the first sum, we may simply apply the binomial theorem to obtain the closed form:

$$S_n=\sum_{k=0}^{3n}{3n \choose k}=(1+1)^{3n}=8^n$$

For the second sum, I looked at the first 5 values:

$$T_1=2,\,T_2=22,\,T_3=170,\,T_4=1366,\,T_5=10922$$

and determined the recursion:

$$T_{n+1}=7T_{n}+8T_{n-1}$$

The characteristic equation for this recursion is:

$$r^2-7r-8=(r+1)(r-8)=0$$

and so the closed form is:

$$T_{n}=k_1(-1)^n+k_28^n$$

Using the initial values to determine the parameters, we may write:

$$T_{1}=-k_1+8k_2=2$$

$$T_{2}=k_1+64k_2=22$$

Adding the two equations, we find:

$$72k_2=24\implies k_2=\frac{1}{3}\implies k_1=\frac{2}{3}$$

Hence:

$$T_{n}=\frac{1}{3}\left(2(-1)^n+8^n \right)$$

And so we find:

$$\left|S_n-3T_n \right|=\left|8^n-3\left(\frac{1}{3}\left(2(-1)^n+8^n \right) \right) \right|=\left|8^n-2(-1)^n-8^n \right|=\left|2(-1)^{n+1} \right|=2$$

Shown as desired.
 
MarkFL said:
My solution:

For the first sum, we may simply apply the binomial theorem to obtain the closed form:

$$S_n=\sum_{k=0}^{3n}{3n \choose k}=(1+1)^{3n}=8^n$$

For the second sum, I looked at the first 5 values:

$$T_1=2,\,T_2=22,\,T_3=170,\,T_4=1366,\,T_5=10922$$

and determined the recursion:

$$T_{n+1}=7T_{n}+8T_{n-1}$$

The characteristic equation for this recursion is:

$$r^2-7r-8=(r+1)(r-8)=0$$

and so the closed form is:

$$T_{n}=k_1(-1)^n+k_28^n$$

Using the initial values to determine the parameters, we may write:

$$T_{1}=-k_1+8k_2=2$$

$$T_{2}=k_1+64k_2=22$$

Adding the two equations, we find:

$$72k_2=24\implies k_2=\frac{1}{3}\implies k_1=\frac{2}{3}$$

Hence:

$$T_{n}=\frac{1}{3}\left(2(-1)^n+8^n \right)$$

And so we find:

$$\left|S_n-3T_n \right|=\left|8^n-3\left(\frac{1}{3}\left(2(-1)^n+8^n \right) \right) \right|=\left|8^n-2(-1)^n-8^n \right|=\left|2(-1)^{n+1} \right|=2$$

Shown as desired.

Hey thanks for participating MarkFL! And I'm so impressed that you were so fast in cracking this problem!
 
anemone said:
For $n=1,2,...,$ set $$S_n=\sum_{k=0}^{3n} {3n\choose k}$$ and $$T_n=\sum_{k=0}^{n} {3n\choose 3k}$$.

Prove that $|S_n-3T_n|=2$.
Define $f(x)=\sum_{k=0}^{3n}{3n\choose k}x^k$.

Then $f(1)+f(\omega)+f(\omega^2)=3T_n$, where $\omega$ is a complex cube root of unity. Note that $f(1)=S_n$. So we get $S_n-3T_n=-[(1+\omega)^{3n}+(1+\omega^2)^{3n}]=-2$
 
caffeinemachine said:
Define $f(x)=\sum_{k=0}^{3n}{3n\choose k}x^k$.

Then $f(1)+f(\omega)+f(\omega^2)=3T_n$, where $\omega$ is a complex cube root of unity. Note that $f(1)=S_n$. So we get $S_n-3T_n=-[(1+\omega)^{3n}+(1+\omega^2)^{3n}]=-2$

Hi caffeinemachine,

Thanks for participating and I really appreciate you adding another good solution to this problem and my thought to solve this problem revolved around the idea that you used too!:)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
2K
Replies
4
Views
2K
Replies
6
Views
2K
Replies
3
Views
1K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
25
Views
7K
Back
Top