MHB Can You Prove This Fraction Sequence is Less Than 1/1000?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6} \cdots\dfrac{999999}{1000000}<\dfrac{1}{1000}$
 
Mathematics news on Phys.org
We claim that

\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6\cdots (2n)} \leq \frac{1}{\sqrt{3n+1}}

for all positive integers n. The result then follows by setting n = 500000 and observing that

\frac{1}{\sqrt{1500001}} &lt; \frac{1}{1000}

The claim is proved by induction on n.
For n = 1, the claim is obvious.
Assume the claim is true for n. We have to show that

\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)(2n+1)}{2 \cdot 4 \cdot 6\cdots (2n)(2n+2)} \leq \frac{1}{\sqrt{3n+4}}

But

\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)(2n+1)}{2 \cdot 4 \cdot 6\cdots(2n)(2n+2)}=\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6\cdots (2n)} \frac{2n+1}{2n+2}\leq\frac{1}{\sqrt{3n+1}}\frac{2n+1}{2n+2}

So we have to show that

\frac{1}{\sqrt{3n+1}}\frac{2n+1}{2n+2}\leq \frac{1}{\sqrt{3n+4}}

This inequality follows by clearing fractions, squaring both sides and simplifying. The result is

19n \leq 20n

which holds for all positive n. This completes the proof of the claim.
 
As reported in...

http://mathhelpboards.com/questions-other-sites-52/unsolved-analysis-number-theory-other-sites-7479-4.html#post40097

... the the explicit expression of the sequence is...

$\displaystyle a_{n} = \prod_{k=1}^{n} (1 - \frac{1}{2\ k})\ (1)$

... and it is the solution of the difference equation...$\displaystyle a_{n+1} = a_{n}\ (1 - \frac{1}{2\ n}),\ a_{1}=1\ (2)$

The (2) is related to the ODE...

$\displaystyle y^{\ '} = - \frac{y}{2\ x}\ (3)$

... the solution of which is $\displaystyle y = \frac{c}{\sqrt{x}}$, so that we can suppose $\displaystyle a_{n} \sim r_{n}= \frac{c}{\sqrt{n}}$. If we suppose that $r_{500000}= \frac{1}{1000}$ then is $\displaystyle c = \frac{1}{\sqrt{2}}$. In the following table the first values os $a_{n}$ and $r_{n}$ are reported... $a_{1}= 1,\ r_{1} = .70710678...$

$a_{2}= .5,\ r_{2} = .5$

$a_{3}= .375,\ r_{3} = .40824829...$

$a_{4}= .3125,\ r_{4} = .35355339...$

$a_{5}= .273438...,\ r_{5} = .31627766...$

$a_{6}= .246094...,\ r_{6} = .2886751...$

$a_{7}= .225586...,\ r_{7} = .2672612...$

$a_{8}= .209473...,\ r_{8} = .25$

$a_{9}= .196381...,\ r_{9} = .2357022...$

$a_{10}= .185471...,\ r_{10} = .2236067...$

It is clear from the table that for n 'large enough' the relative increments of the $a_{n}$ and $r_{n}$ are pratically the same and that is verified considering that is... $\displaystyle \frac{a_{n+1}}{a_{n}} = 1 - \frac{1}{2\ n}$ $\displaystyle \frac{r_{n+1}}{r_{n}} = \sqrt{1 - \frac{1}{n}} = 1 - \frac{1}{2\ n} - \frac{1}{8\ n^{2}} - ...\ (4)$... so that we can conclude that is $\displaystyle a_{500000} < r_{500000} = \frac{1}{1000}$...

Kind regards

$\chi$ $\sigma$
 
Thanks for participating to both of you, Petek and chisigma! Your induction method looks nice and great, Petek!

@chisigma, your solution post reminds me of this thread(http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/find-a_%7B100000%7D-8448.html)! Bravo, chisigma!:)

Solution provided by other:

Let $x=\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6} \cdots\dfrac{999999}{1000000}$.

Thus, what we need to show is that $x<\dfrac{1}{1000}$.

Now, note that

$x^2=\dfrac{1^2}{2^2}\cdot\dfrac{3^2}{4^2}\cdot \dfrac{5^2}{6^2} \cdots\dfrac{999999^2}{1000000^2}$

Since decreasing the denominator of a fraction makes it bigger, we have that

$\dfrac{1^2}{2^2}\le \dfrac{1^2}{2^2-1}= \dfrac{1^2}{(2-1)(2+1)}=\dfrac{1^2}{1\cdot3}$

$\dfrac{3^2}{4^2}\le \dfrac{3^2}{4^2-1}= \dfrac{3^2}{(4-1)(4+1)}=\dfrac{3^2}{3\cdot5}$

$\dfrac{5^2}{6^2}\le \dfrac{5^2}{6^2-1}= \dfrac{5^2}{(6-1)(6+1)}=\dfrac{5^2}{5\cdot7}$

$\vdots\;\;\;\;\;\;\;\;\;\;\;\vdots$

$\dfrac{999999^2}{1000000^2}\le \dfrac{999999^2}{1000000^2-1}= \dfrac{999999^2}{(1000000-1)(1000000+1)}=\dfrac{999999^2}{999999\cdot1000001}$

Multiplying all these together we get

$x^2<\dfrac{1}{1000001}<\dfrac{1}{1000000}$

Now, taking square roof of both sides we obtain

$x<\dfrac{1}{1000}$ or

$\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6} \cdots\dfrac{999999}{1000000}<\dfrac{1}{1000}$ (Q.E.D.)
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top