Can you prove this identity using trigonometric identities?

Click For Summary

Discussion Overview

The discussion revolves around proving two trigonometric identities involving tangent, cotangent, secant, and cosecant functions. Participants explore various approaches and hints for tackling these problems, focusing on algebraic manipulations and transformations of the expressions.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • Post 1 presents two identities to prove, inviting assistance on the first problem.
  • Post 2 suggests multiplying the numerator and denominator by a specific expression to simplify the second identity.
  • Post 3 reiterates the hint from Post 2 and indicates completion of the second problem, seeking help for the first.
  • Post 4 provides a detailed step-by-step approach to proving the first identity, utilizing algebraic manipulation and trigonometric identities.
  • Post 5 offers an alternative proof for the first identity, presenting a different method involving substitutions and simplifications.
  • Post 6 introduces a substitution approach using variables for sine and cosine, leading to a similar conclusion as in previous posts.

Areas of Agreement / Disagreement

Participants present multiple methods to prove the first identity, indicating a shared understanding of the problem but differing approaches. The second identity remains less explored, with hints provided but no complete proofs discussed.

Contextual Notes

Some steps in the proofs rely on specific algebraic manipulations that may depend on the definitions of the trigonometric functions involved. There are unresolved assumptions regarding the conditions under which these identities hold true.

Drain Brain
Messages
143
Reaction score
0
Help me get started with these problems.


Prove the following$\frac{\tan(A)}{1-\cot(A)}+\frac{\cot(A)}{1-\tan(A)}=\sec(A)\csc(A)+1$

$\frac{\sec(A)-\tan(A)}{\sec(A)+\tan(A)}=1-2\sec(A)\tan(A)+2\tan^{2}(A)$

 
Mathematics news on Phys.org
Hint for 2: Multiply nominator and denominator with $(\sec(A)-\tan(A))$
 
Siron said:
Hint for 2: Multiply nominator and denominator with $(\sec(A)-\tan(A))$

Actually, I'm done with prob 2. I need hint for prob 1. Thanks!
 
Hello, Drain Brain!

Prove: .$\frac{\tan A}{1-\cos A} + \frac{\cot A}{1-\tan A} \:=\:\sec A\csc A+1$
$\frac{\tan A}{1-\cot A} + \frac{\cot A}{1-\tan A} \:=\: \dfrac{\frac{\sin A}{\cos A}}{1 - \frac{\cos A}{\sin A}} + \dfrac{\frac{\cos A}{\sin A}}{1 - \frac{\sin A}{\cos A}} $

Multiply both fractions by $\frac{\sin A\cos A}{\sin A\cos A}\!:$

$\quad \frac{\sin^2\!A}{\sin A\cos A-\cos^2\!A} + \frac{\cos^2\!A}{\sin A \cos A - \sin^2\!A} $

$\quad =\;\frac{\sin^2\!A}{\cos A(\sin A - \cos A)} + \frac{\cos^2\!A}{-\sin A(\sin A - \cos A)} $

$\quad =\;\frac{\sin^3\!A}{\sin A\cos A(\sin A - \cos A)} - \frac{\cos^3\!A}{\sin A\cos A(\sin A - \cos A)}$

$\quad =\;\frac{\sin^3\!A\,-\,\cos^3\!A}{\sin A\cos A(\sin A\,-\,\cos A)} \;=\;\frac{(\sin A\,-\,\cos A)(\sin^2\!A\,+\,\sin A\cos A\,+\,\cos^2\!A)}{\sin A\cos A(\sin A\,-\,\cos A)}$

$\quad =\;\frac{(\sin^2\!A\,+\,\cos^2\!A)\,+\,\sin A\cos A}{\sin A\cos A} \;=\; \frac{1\,+\,\sin A\cos A}{\sin A\cos A}$

$\quad =\; \frac{1}{\sin A\cos A}\,+\,\frac{\sin A\cos A}{\sin A\cos A} \;=\; \sec A\csc A\,+\,1 $

 
$$\frac{\tan(A)}{1-\cot(A)}+\frac{\cot(A)}{1-\tan(A)}=\frac{\tan^2(A)-\cot(A)}{\tan(A)-1}\Leftrightarrow\frac{u}{1-\frac1u}+\frac{\frac1u}{1-u}$$$$=\frac{\cot(A)(\tan^3(A)-1)}{\tan(A)-1}$$$$=\frac{\cot(A)(\tan(A)-1)(\tan^2(A)+\tan(A)+1)}{\tan(A)-1}$$$$=\cot(A)(\tan^2(A)+\tan(A)+1)$$$$=\tan(A)+1+\cot(A)$$$$=\frac{1}{\cos(A)\sin(A)}+1$$$$=\sec(A)\csc(A)+1$$
 
Nothing more , but you might be interested ,

Let $\sin = u \,\,\,\,\, \cos = v$

$$\frac{\frac{u}{v}}{1-\frac{v}{u}}+\frac{\frac{v}{u}}{1-\frac{u}{v}} = \frac{u^2}{v(u-v)}-\frac{v^2}{u(u-v)}=\frac{u^3-v^3}{uv(u-v)} = \frac{1+uv}{uv} = \frac{1}{uv}+1$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K