MHB Can you prove this identity using trigonometric identities?

Click For Summary
The discussion focuses on proving two trigonometric identities. The first identity, involving tangent and cotangent, is shown to equal secant times cosecant plus one through algebraic manipulation and simplification. The second identity, which was solved by the original poster, also involves secant and tangent and requires multiplying the numerator and denominator by specific terms for simplification. Participants share hints and steps for solving the first problem, emphasizing the importance of careful algebraic manipulation. The thread concludes with a successful demonstration of the identities using trigonometric relationships.
Drain Brain
Messages
143
Reaction score
0
Help me get started with these problems.


Prove the following$\frac{\tan(A)}{1-\cot(A)}+\frac{\cot(A)}{1-\tan(A)}=\sec(A)\csc(A)+1$

$\frac{\sec(A)-\tan(A)}{\sec(A)+\tan(A)}=1-2\sec(A)\tan(A)+2\tan^{2}(A)$

 
Mathematics news on Phys.org
Hint for 2: Multiply nominator and denominator with $(\sec(A)-\tan(A))$
 
Siron said:
Hint for 2: Multiply nominator and denominator with $(\sec(A)-\tan(A))$

Actually, I'm done with prob 2. I need hint for prob 1. Thanks!
 
Hello, Drain Brain!

Prove: .$\frac{\tan A}{1-\cos A} + \frac{\cot A}{1-\tan A} \:=\:\sec A\csc A+1$
$\frac{\tan A}{1-\cot A} + \frac{\cot A}{1-\tan A} \:=\: \dfrac{\frac{\sin A}{\cos A}}{1 - \frac{\cos A}{\sin A}} + \dfrac{\frac{\cos A}{\sin A}}{1 - \frac{\sin A}{\cos A}} $

Multiply both fractions by $\frac{\sin A\cos A}{\sin A\cos A}\!:$

$\quad \frac{\sin^2\!A}{\sin A\cos A-\cos^2\!A} + \frac{\cos^2\!A}{\sin A \cos A - \sin^2\!A} $

$\quad =\;\frac{\sin^2\!A}{\cos A(\sin A - \cos A)} + \frac{\cos^2\!A}{-\sin A(\sin A - \cos A)} $

$\quad =\;\frac{\sin^3\!A}{\sin A\cos A(\sin A - \cos A)} - \frac{\cos^3\!A}{\sin A\cos A(\sin A - \cos A)}$

$\quad =\;\frac{\sin^3\!A\,-\,\cos^3\!A}{\sin A\cos A(\sin A\,-\,\cos A)} \;=\;\frac{(\sin A\,-\,\cos A)(\sin^2\!A\,+\,\sin A\cos A\,+\,\cos^2\!A)}{\sin A\cos A(\sin A\,-\,\cos A)}$

$\quad =\;\frac{(\sin^2\!A\,+\,\cos^2\!A)\,+\,\sin A\cos A}{\sin A\cos A} \;=\; \frac{1\,+\,\sin A\cos A}{\sin A\cos A}$

$\quad =\; \frac{1}{\sin A\cos A}\,+\,\frac{\sin A\cos A}{\sin A\cos A} \;=\; \sec A\csc A\,+\,1 $

 
$$\frac{\tan(A)}{1-\cot(A)}+\frac{\cot(A)}{1-\tan(A)}=\frac{\tan^2(A)-\cot(A)}{\tan(A)-1}\Leftrightarrow\frac{u}{1-\frac1u}+\frac{\frac1u}{1-u}$$$$=\frac{\cot(A)(\tan^3(A)-1)}{\tan(A)-1}$$$$=\frac{\cot(A)(\tan(A)-1)(\tan^2(A)+\tan(A)+1)}{\tan(A)-1}$$$$=\cot(A)(\tan^2(A)+\tan(A)+1)$$$$=\tan(A)+1+\cot(A)$$$$=\frac{1}{\cos(A)\sin(A)}+1$$$$=\sec(A)\csc(A)+1$$
 
Nothing more , but you might be interested ,

Let $\sin = u \,\,\,\,\, \cos = v$

$$\frac{\frac{u}{v}}{1-\frac{v}{u}}+\frac{\frac{v}{u}}{1-\frac{u}{v}} = \frac{u^2}{v(u-v)}-\frac{v^2}{u(u-v)}=\frac{u^3-v^3}{uv(u-v)} = \frac{1+uv}{uv} = \frac{1}{uv}+1$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K