MHB Can you prove this identity using trigonometric identities?

Click For Summary
SUMMARY

The discussion focuses on proving two trigonometric identities involving tangent, cotangent, secant, and cosecant functions. The first identity, $\frac{\tan(A)}{1-\cot(A)}+\frac{\cot(A)}{1-\tan(A)}=\sec(A)\csc(A)+1$, is proven through algebraic manipulation and substitution. The second identity, $\frac{\sec(A)-\tan(A)}{\sec(A)+\tan(A)}=1-2\sec(A)\tan(A)+2\tan^{2}(A)$, is also addressed with hints for simplification. The use of identities and algebraic techniques is essential for these proofs.

PREREQUISITES
  • Understanding of trigonometric functions: tangent, cotangent, secant, and cosecant
  • Familiarity with algebraic manipulation and simplification techniques
  • Knowledge of trigonometric identities and their applications
  • Ability to perform substitutions and transformations in equations
NEXT STEPS
  • Study advanced trigonometric identities and their proofs
  • Learn about algebraic techniques for simplifying complex fractions
  • Explore the applications of trigonometric identities in calculus
  • Practice solving trigonometric equations using substitution methods
USEFUL FOR

Students and educators in mathematics, particularly those focusing on trigonometry and algebra, as well as anyone preparing for exams involving trigonometric proofs and identities.

Drain Brain
Messages
143
Reaction score
0
Help me get started with these problems.


Prove the following$\frac{\tan(A)}{1-\cot(A)}+\frac{\cot(A)}{1-\tan(A)}=\sec(A)\csc(A)+1$

$\frac{\sec(A)-\tan(A)}{\sec(A)+\tan(A)}=1-2\sec(A)\tan(A)+2\tan^{2}(A)$

 
Mathematics news on Phys.org
Hint for 2: Multiply nominator and denominator with $(\sec(A)-\tan(A))$
 
Siron said:
Hint for 2: Multiply nominator and denominator with $(\sec(A)-\tan(A))$

Actually, I'm done with prob 2. I need hint for prob 1. Thanks!
 
Hello, Drain Brain!

Prove: .$\frac{\tan A}{1-\cos A} + \frac{\cot A}{1-\tan A} \:=\:\sec A\csc A+1$
$\frac{\tan A}{1-\cot A} + \frac{\cot A}{1-\tan A} \:=\: \dfrac{\frac{\sin A}{\cos A}}{1 - \frac{\cos A}{\sin A}} + \dfrac{\frac{\cos A}{\sin A}}{1 - \frac{\sin A}{\cos A}} $

Multiply both fractions by $\frac{\sin A\cos A}{\sin A\cos A}\!:$

$\quad \frac{\sin^2\!A}{\sin A\cos A-\cos^2\!A} + \frac{\cos^2\!A}{\sin A \cos A - \sin^2\!A} $

$\quad =\;\frac{\sin^2\!A}{\cos A(\sin A - \cos A)} + \frac{\cos^2\!A}{-\sin A(\sin A - \cos A)} $

$\quad =\;\frac{\sin^3\!A}{\sin A\cos A(\sin A - \cos A)} - \frac{\cos^3\!A}{\sin A\cos A(\sin A - \cos A)}$

$\quad =\;\frac{\sin^3\!A\,-\,\cos^3\!A}{\sin A\cos A(\sin A\,-\,\cos A)} \;=\;\frac{(\sin A\,-\,\cos A)(\sin^2\!A\,+\,\sin A\cos A\,+\,\cos^2\!A)}{\sin A\cos A(\sin A\,-\,\cos A)}$

$\quad =\;\frac{(\sin^2\!A\,+\,\cos^2\!A)\,+\,\sin A\cos A}{\sin A\cos A} \;=\; \frac{1\,+\,\sin A\cos A}{\sin A\cos A}$

$\quad =\; \frac{1}{\sin A\cos A}\,+\,\frac{\sin A\cos A}{\sin A\cos A} \;=\; \sec A\csc A\,+\,1 $

 
$$\frac{\tan(A)}{1-\cot(A)}+\frac{\cot(A)}{1-\tan(A)}=\frac{\tan^2(A)-\cot(A)}{\tan(A)-1}\Leftrightarrow\frac{u}{1-\frac1u}+\frac{\frac1u}{1-u}$$$$=\frac{\cot(A)(\tan^3(A)-1)}{\tan(A)-1}$$$$=\frac{\cot(A)(\tan(A)-1)(\tan^2(A)+\tan(A)+1)}{\tan(A)-1}$$$$=\cot(A)(\tan^2(A)+\tan(A)+1)$$$$=\tan(A)+1+\cot(A)$$$$=\frac{1}{\cos(A)\sin(A)}+1$$$$=\sec(A)\csc(A)+1$$
 
Nothing more , but you might be interested ,

Let $\sin = u \,\,\,\,\, \cos = v$

$$\frac{\frac{u}{v}}{1-\frac{v}{u}}+\frac{\frac{v}{u}}{1-\frac{u}{v}} = \frac{u^2}{v(u-v)}-\frac{v^2}{u(u-v)}=\frac{u^3-v^3}{uv(u-v)} = \frac{1+uv}{uv} = \frac{1}{uv}+1$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K