Can You Prove This Inequality Involving Binomial Coefficients?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion centers on proving the inequality involving binomial coefficients: \(\left(\frac{m}{m+n}\right)^m \left(\frac{n}{m+n}\right)^n {{m+n}\choose m}<1\) for all positive integers \(m\) and \(n\). Participants express gratitude for previous contributions and engage with the current problem. MarkFL and Sudharaka provide correct solutions, with MarkFL's solution highlighted for reference. The thread emphasizes collaboration and problem-solving in mathematical contexts. The inequality is a focus of interest for those studying combinatorial mathematics.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks again to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: Prove that
\[\left(\frac{m}{m+n}\right)^m \left(\frac{n}{m+n}\right)^n {{m+n}\choose m}<1\]
for all $m,n\in\mathbb{Z}^+$.

-----

Hint:
Consider the term for $k=m$ in the binomial theorem expansion for $(x+y)^{m+n}$ for appropriate $x$ and $y$.

 
Physics news on Phys.org
This week's problem was correctly answered by MarkFL and Sudharaka. You can find MarkFL's solution below.

I would choose to begin with:

$$1=\left(\frac{m+n}{m+n} \right)^{m+n}=\left(\frac{m}{m+n}+\frac{n}{m+n} \right)^{m+n}$$

Using the binomial theorem, we may write:

$$1=\sum_{k=0}^{m+n}{m+n \choose k}\left(\frac{m}{m+n} \right)^{m+n-k}\left(\frac{n}{m+n} \right)^k$$

Using the identity:

$${n \choose r}={n \choose n-r}$$

there results:

$$1=\sum_{k=0}^{m+n}{m+n \choose m+n-k}\left(\frac{m}{m+n} \right)^{m+n-k}\left(\frac{n}{m+n} \right)^k$$

$$1=\sum_{k=0}^{n-1}{m+n \choose m+n-k}\left(\frac{m}{m+n} \right)^{m+n-k}\left(\frac{n}{m+n} \right)^k+$$

$${m+n \choose m}\left(\frac{m}{m+n} \right)^{m}\left(\frac{n}{m+n} \right)^n+\sum_{k=n+1}^{m+n}{m+n \choose m+n-k}\left(\frac{m}{m+n} \right)^{m+n-k}\left(\frac{n}{m+n} \right)^k$$

Hence, we may state:

$${m+n \choose m}\left(\frac{m}{m+n} \right)^{m}\left(\frac{n}{m+n} \right)^n=$$

$$1-\left(\sum_{k=0}^{n-1}{m+n \choose m+n-k}\left(\frac{m}{m+n} \right)^{m+n-k}\left(\frac{n}{m+n} \right)^k+\sum_{k=n+1}^{m+n}{m+n \choose m+n-k}\left(\frac{m}{m+n} \right)^{m+n-k}\left(\frac{n}{m+n} \right)^k \right)<1$$
Thus, we may conclude:

$${m+n \choose m}\left(\frac{m}{m+n} \right)^{m}\left(\frac{n}{m+n} \right)^n<1$$

Shown as desired.
 

Similar threads

Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K