MHB Can You Prove This Number Theory Problem Involving Primes and Coprime Numbers?

AI Thread Summary
For coprime integers \(a\) and \(b\) and a prime \(p \neq 2\), it is proven that the greatest common divisor \(\left(a+b, \frac{a^p+b^p}{a+b}\right)\) can only be \(1\) or \(p\). If \(q\) is a prime divisor of \(a+b\), it cannot divide either \(a\) or \(b\) due to their coprimality. If \(q\) also divides \(\frac{a^p+b^p}{a+b}\), it leads to the conclusion that \(q\) must divide \(p\). Consequently, the only possible common divisors of \(a+b\) and \(\frac{a^p+b^p}{a+b}\) are \(1\) and \(p\). This establishes the relationship between the sums and their divisors in the context of prime numbers.
MountEvariste
Messages
85
Reaction score
0
1. For $(a,b) = 1$ and prime $p\ne 2$, prove that $\displaystyle \left(a+b, \frac{a^p+b^p}{a+b}\right) = 1$ or $p$.
 
Mathematics news on Phys.org
MountEvariste said:
1. For $(a,b) = 1$ and prime $p\ne 2$, prove that $\displaystyle \left(a+b, \frac{a^p+b^p}{a+b}\right) = 1$ or $p$.
[sp]If $q$ is a prime divisor of $a+b$ then $q$ cannot divide $a$ or $b$ (because $a$ and $b$ are coprime).

If $q$ is also a divisor of $\dfrac{a^p+b^p}{a+b}$ then $q$ divides $$\begin{aligned}\dfrac{a^p+b^p}{a+b} &= a^{p-1} - a^{p-2}b + a^{p-3}b^2 - \ldots + b^{p-1} \\ &= (a+b)\bigl(a^{p-2} -2a^{p-3}b + 3a^{p-4}b^2 - \ldots - (p-1)b^{p-2}\bigr) + pb^{p-1} .\end{aligned}$$ Therefore $q$ divides $pb^{p-1}$. But $q$ dnes not divide $b$, so it follows that $q$ divides $p$. Hence the only possible prime divisors of $a+b$ and $\dfrac{a^p+b^p}{a+b}$ (and consequently the only possible common divisors) are $1$ and $p$.
[/sp]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top