Can you prove this trigonometric equation? 3cos(p+s)=7cos(q+r)

Click For Summary
SUMMARY

The discussion centers on proving the trigonometric equation \(3 \cos (p+s) = 7 \cos (q+r)\) given the conditions \(2\cos p + 6 \cos q + 7 \cos r + 9 \cos s = 0\) and \(2\sin p - 6 \sin q + 7 \sin r - 9 \sin s = 0\). The proof involves manipulating these equations using trigonometric identities and properties of cosine and sine functions. The conclusion confirms that the original equation holds true under the specified conditions.

PREREQUISITES
  • Understanding of trigonometric identities
  • Knowledge of the unit circle and angle properties
  • Familiarity with the cosine and sine functions
  • Ability to manipulate algebraic equations
NEXT STEPS
  • Study the derivation of trigonometric identities
  • Explore the properties of angles in the unit circle
  • Learn about vector representations of trigonometric functions
  • Investigate advanced techniques in solving trigonometric equations
USEFUL FOR

Mathematicians, students studying trigonometry, and educators looking to deepen their understanding of trigonometric proofs and identities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $p,\,q,\,r,\,s\,\in[0,\,\pi]$ and we are given that

$2\cos p+6 \cos q+7 \cos r+9 \cos s=0$ and

$2\sin p-6 \sin q+7 \sin r-9 \sin s=0$.

Prove that $3 \cos (p+s)=7\cos(q+r)$.
 
Mathematics news on Phys.org
anemone said:
Let $p,\,q,\,r,\,s\,\in[0,\,\pi]$ and we are given that

$2\cos p+6 \cos q+7 \cos r+9 \cos s=0$ and

$2\sin p-6 \sin q+7 \sin r-9 \sin s=0$

Prove that $3 \cos (p+s)=7\cos(q+r)$.

we have

$2\cos p + 9\cos s = - 6 \cos q - 7 \cos r$

square and get
$4\cos^2 p + 81 \cos^2 s + 36 \cos p \cos s = 36 \cos ^2 q + 49 \cos ^2 r - 84 \cos q \cos r...(1)$
from 2nd relation given

$2\sin p-9 \sin s=6 \sin q- 7 \sin r$

we have sqaure and get

$4\sin^2 p + 81 \sin^2 s - 36 \sin p \sin s = 36 \sin ^2 q + 49 \sin ^2 r - 84 \sin q \sin r$ ...(2)

and (1) and (2) to get
$4(\cos^2 p + \sin ^2 p )+ 81(\cos ^2 s +\sin^2 s) + 36 (\cos p \cos s - \sin p \sin s) = 36 (\cos ^2 q +\sin ^2 q) $
$+ 49 (\cos ^2 r + \sin ^2 r) + 84(\cos q cos r - \sin q \sin r)$

or
$4 + 81 + 36 \cos (p+ s) = 36 + 49 + 84\cos (q+r)$

or
$ 36 \cos (p+ s) = 84 \cos (q+r)$

or $ 3 \cos (p+ s) = 7 \cos (q+r)$
 
Last edited:
\[2cos(p)+9cos(s)+6cos(q)+7cos(r)=0\\2sin(p)-9sin(s)-6sin(q)+7sin(r)=0\]

\[2cos(p)+9cos(s)=-6cos(q)-7cos(r)\\ 2sin(p)-9sin(s)=6sin(q)-7sin(r)\]

$$4cos^2(p)+81cos^2(s)+36cos(p)cos(s)=36cos^2(q)+49cos^2(r)+84cos(q)cos(r)\\ 4sin^2(p)+81sin^2(s)-36sin(p)sin(s)=36sin^2(q)+49sin^2(r)-84sin(q)sin(r)$$

Adding the two equations yields:
\[85 + 36cos(p+s)=85 + 84cos(q+r) \\

\Rightarrow 3cos(p+s) = 7cos(q+r)\]
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K