Can You Prove this Trigonometric Inequality Challenge?

Click For Summary
SUMMARY

The discussion centers on proving the trigonometric inequality $\frac{\sin^3 x}{5} + \frac{\cos^3 x}{12} \geq \frac{1}{13}$ for real $x \in \left(0, \frac{\pi}{2}\right)$. Participants utilized the Cauchy–Schwarz inequality and the substitution $\theta = \arcsin\frac{5}{13}$, leading to the transformation of the inequality into a more manageable form. The proof demonstrates that the inequality holds true by establishing relationships between the vectors defined in the context of the Cauchy–Schwarz inequality.

PREREQUISITES
  • Understanding of trigonometric functions and their properties
  • Familiarity with the Cauchy–Schwarz inequality
  • Knowledge of vector representation in mathematical proofs
  • Basic skills in manipulating inequalities
NEXT STEPS
  • Study advanced applications of the Cauchy–Schwarz inequality in mathematical proofs
  • Explore trigonometric identities and their proofs
  • Learn about vector spaces and their properties in mathematics
  • Investigate other trigonometric inequalities and their proof techniques
USEFUL FOR

Mathematicians, students studying advanced calculus or analysis, and anyone interested in trigonometric inequalities and proof strategies.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let the real $x\in \left(0,\,\dfrac{\pi}{2}\right)$, prove that $\dfrac{\sin^3 x}{5}+\dfrac{\cos^3 x}{12}≥ \dfrac{1}{13}$.
 
Mathematics news on Phys.org
My solution:

Let's multiply through by:

$$5\cdot12\cdot13=780$$

to get:

$$156\sin^3(x)+65\cos^3(x)\ge60$$

Let:

$$g(x,y)=x+y-\frac{\pi}{2}=0$$

and:

$$f(x,y)=156\sin^3(x)+65\sin^3(y)$$

Using Lagrange multipliers, we obtain:

$$468\sin^2(x)\cos(x)=\lambda$$

$$195\sin^2(y)\cos(y)=\lambda$$

From this, we obtain:

$$12\sin^2(x)\cos(x)=5\sin^2(y)\cos(y)$$

And, using the constraint, this implies:

$$\sin(x)=\frac{5}{13},\,\sin(y)=\frac{12}{13}$$

Hence:

$$f(x,y)=156\left(\frac{5}{13}\right)^3+65\left(\frac{12}{13}\right)^3=60$$

To show this is a minimum, we can pick another point on the constraint:

$$(x,y)=\left(\frac{\pi}{4},\frac{\pi}{4}\right)$$

$$f\left(\frac{\pi}{4},\frac{\pi}{4}\right)=\frac{156}{2\sqrt{2}}+\frac{65}{2\sqrt{2}}=\frac{221}{2\sqrt{2}}>60$$

Thus, we may state:

$$f_{\min}=60$$
 
MarkFL said:
My solution:

Let's multiply through by:

$$5\cdot12\cdot13=780$$

to get:

$$156\sin^3(x)+65\cos^3(x)\ge60$$

Let:

$$g(x,y)=x+y-\frac{\pi}{2}=0$$

and:

$$f(x,y)=156\sin^3(x)+65\sin^3(y)$$

Using Lagrange multipliers, we obtain:

$$468\sin^2(x)\cos(x)=\lambda$$

$$195\sin^2(y)\cos(y)=\lambda$$

From this, we obtain:

$$12\sin^2(x)\cos(x)=5\sin^2(y)\cos(y)$$

And, using the constraint, this implies:

$$\sin(x)=\frac{5}{13},\,\sin(y)=\frac{12}{13}$$

Hence:

$$f(x,y)=156\left(\frac{5}{13}\right)^3+65\left(\frac{12}{13}\right)^3=60$$

To show this is a minimum, we can pick another point on the constraint:

$$(x,y)=\left(\frac{\pi}{4},\frac{\pi}{4}\right)$$

$$f\left(\frac{\pi}{4},\frac{\pi}{4}\right)=\frac{156}{2\sqrt{2}}+\frac{65}{2\sqrt{2}}=\frac{221}{2\sqrt{2}}>60$$

Thus, we may state:

$$f_{\min}=60$$

Very good job, MarkFL!(Cool)

I welcome others to try it with another approach as well! :o
 
anemone said:
Let the real $x\in \left(0,\,\dfrac{\pi}{2}\right)$, prove that $\dfrac{\sin^3 x}{5}+\dfrac{\cos^3 x}{12}≥ \dfrac{1}{13}$.
[sp]Let $\theta = \arcsin\frac5{13}$, so that $\sin\theta = \frac5{13}$ and $\cos\theta = \frac{12}{13}.$ Then (after dividing the denominators by $13$) the inequality becomes $$\frac{\sin^3x}{\sin\theta} + \frac{\cos^3x}{\cos\theta} \geqslant 1.$$ To see that this is true, let $\mathbf{a}$, $\mathbf{b}$ be the vectors given by $$\mathbf{a} = \left(\sqrt{\frac{\sin^3x}{\sin\theta}}, \sqrt{\frac{\cos^3x}{\cos\theta}}\right), \qquad \mathbf{b} = \left(\sqrt{\sin x\sin\theta}, \sqrt{\cos x\cos\theta}\right).$$ The Cauchy–Schwarz inequality says that $(\mathbf{a\cdot b})^2 \leqslant \|\mathbf{a}\|^2\|\mathbf{b}\|^2$. But $$\mathbf{a\cdot b} = \sin^2x + \cos^2x = 1,$$ $$\|\mathbf{a}\|^2 = \frac{\sin^3x}{\sin\theta} + \frac{\cos^3x}{\cos\theta},$$ $$\|\mathbf{b}\|^2 = \sin x\sin\theta + \cos x\cos\theta = \cos(\theta - x).$$ Therefore $$1 \leqslant \left(\frac{\sin^3x}{\sin\theta} + \frac{\cos^3x}{\cos\theta}\right) \cos(\theta - x) \leqslant \frac{\sin^3x}{\sin\theta} + \frac{\cos^3x}{\cos\theta}.$$[/sp]
 
Opalg said:
[sp]Let $\theta = \arcsin\frac5{13}$, so that $\sin\theta = \frac5{13}$ and $\cos\theta = \frac{12}{13}.$ Then (after dividing the denominators by $13$) the inequality becomes $$\frac{\sin^3x}{\sin\theta} + \frac{\cos^3x}{\cos\theta} \geqslant 1.$$ To see that this is true, let $\mathbf{a}$, $\mathbf{b}$ be the vectors given by $$\mathbf{a} = \left(\sqrt{\frac{\sin^3x}{\sin\theta}}, \sqrt{\frac{\cos^3x}{\cos\theta}}\right), \qquad \mathbf{b} = \left(\sqrt{\sin x\sin\theta}, \sqrt{\cos x\cos\theta}\right).$$ The Cauchy–Schwarz inequality says that $(\mathbf{a\cdot b})^2 \leqslant \|\mathbf{a}\|^2\|\mathbf{b}\|^2$. But $$\mathbf{a\cdot b} = \sin^2x + \cos^2x = 1,$$ $$\|\mathbf{a}\|^2 = \frac{\sin^3x}{\sin\theta} + \frac{\cos^3x}{\cos\theta},$$ $$\|\mathbf{b}\|^2 = \sin x\sin\theta + \cos x\cos\theta = \cos(\theta - x).$$ Therefore $$1 \leqslant \left(\frac{\sin^3x}{\sin\theta} + \frac{\cos^3x}{\cos\theta}\right) \cos(\theta - x) \leqslant \frac{\sin^3x}{\sin\theta} + \frac{\cos^3x}{\cos\theta}.$$[/sp]

Very well done Opalg! Thanks for participating!(Cool)

My solution:
First, multiply the first and second fraction (top and bottom) from the LHS of the intended inequality by $\sin x$ and $\cos x$ respectively to get:

$\dfrac{\sin^3 x}{5}+\dfrac{\cos^3 x}{12}=\dfrac{\sin^4 x}{5\sin x}+\dfrac{\cos^4 x}{12 \cos x}$(*)

Since $\sin x$ and $\cos x$ are both positive reals in the given domain, we can apply the Titu's Lemma to the RHS of (*) to get:

$\begin{align*}\dfrac{\sin^4 x}{5\sin x}+\dfrac{\cos^4 x}{12 \cos x}&\ge \dfrac{(\sin^2 x+\cos^2 x)^2}{5\sin x+12 \cos x}\\&\ge \dfrac{1}{\sqrt{5^2+12^2}\sin \left(x+\tan^{-1}\dfrac{12}{5}\right)}\\&\ge \dfrac{1}{13 \sin \left(x+\tan^{-1}\dfrac{12}{5}\right)}\\&\ge \dfrac{1}{13}\,\,\,\text{since}\,\,\,\sin \left(x+\tan^{-1}\dfrac{12}{5}\right)\le 1 \,\,\,\text{for}\,\,\, x\in \left(0,\,\dfrac{\pi}{2}\right)\end{align*}$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K