[sp]Let $\theta = \arcsin\frac5{13}$, so that $\sin\theta = \frac5{13}$ and $\cos\theta = \frac{12}{13}.$ Then (after dividing the denominators by $13$) the inequality becomes $$\frac{\sin^3x}{\sin\theta} + \frac{\cos^3x}{\cos\theta} \geqslant 1.$$ To see that this is true, let $\mathbf{a}$, $\mathbf{b}$ be the vectors given by $$\mathbf{a} = \left(\sqrt{\frac{\sin^3x}{\sin\theta}}, \sqrt{\frac{\cos^3x}{\cos\theta}}\right), \qquad \mathbf{b} = \left(\sqrt{\sin x\sin\theta}, \sqrt{\cos x\cos\theta}\right).$$ The Cauchy–Schwarz inequality says that $(\mathbf{a\cdot b})^2 \leqslant \|\mathbf{a}\|^2\|\mathbf{b}\|^2$. But $$\mathbf{a\cdot b} = \sin^2x + \cos^2x = 1,$$ $$\|\mathbf{a}\|^2 = \frac{\sin^3x}{\sin\theta} + \frac{\cos^3x}{\cos\theta},$$ $$\|\mathbf{b}\|^2 = \sin x\sin\theta + \cos x\cos\theta = \cos(\theta - x).$$ Therefore $$1 \leqslant \left(\frac{\sin^3x}{\sin\theta} + \frac{\cos^3x}{\cos\theta}\right) \cos(\theta - x) \leqslant \frac{\sin^3x}{\sin\theta} + \frac{\cos^3x}{\cos\theta}.$$[/sp]