Can you prove this trigonometric inequality?

Click For Summary
SUMMARY

The discussion centers on proving the trigonometric inequality: \((\sin x + a\cos x)(\sin x + b\cos x) \leq 1 + \left(\frac{a + b}{2}\right)^2\). Participants analyze the left side, which simplifies to \(\sqrt{1+a^2} \times \sqrt{1+b^2}\), and compare it to the right side. A critical point raised is the condition when \(ab < 0\), which may invalidate the inequality. Ultimately, the proof hinges on demonstrating that \(\frac{a^2+b^2}{4} \leq ab\) holds for all real numbers \(a\) and \(b\).

PREREQUISITES
  • Understanding of trigonometric identities and inequalities
  • Familiarity with algebraic manipulation and inequalities
  • Knowledge of the Cauchy-Schwarz inequality
  • Basic calculus concepts related to limits and continuity
NEXT STEPS
  • Study the Cauchy-Schwarz inequality and its applications in trigonometric proofs
  • Explore advanced algebraic techniques for manipulating inequalities
  • Learn about the implications of the product of real numbers being negative on inequalities
  • Investigate other trigonometric inequalities and their proofs for deeper understanding
USEFUL FOR

Mathematicians, students studying advanced algebra or trigonometry, and anyone interested in proving inequalities in mathematical analysis.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Show that :

[math]\left( {\sin x + a\cos x} \right)\left( {\sin x + b\cos x} \right) \leq 1 + \left( \frac{a + b}{2} \right)^2[/math]
 
Mathematics news on Phys.org
MarkFL said:
Show that :

[math]\left( {\sin x + a\cos x} \right)\left( {\sin x + b\cos x} \right) \leq 1 + \left( \frac{a + b}{2} \right)^2[/math]
left side=
[math]\left( {\sin x + a\cos x} \right)\left( {\sin x + b\cos x} \right)\leq \sqrt{1+a^2}\times \sqrt{1+b^2}[/math]
$\leq\dfrac{1+a^2+1+b^2}{2}=1+\dfrac {a^2+b^2}{2}$
Are you sure , right side is correct ?
 
Last edited:
Albert said:
left side=
[math]\left( {\sin x + a\cos x} \right)\left( {\sin x + b\cos x} \right)\leq \sqrt{1+a^2}\times \sqrt{1+b^2}[/math]
$\leq\dfrac{1+a^2+1+b^2}{2}=1+\dfrac {a^2+b^2}{2}$
Are you sure , right side is correct ?

Yes, it is correct...it appears you are assuming the two sinusoidal factors are in phase with one another, that is for $a=b$. In this case, then your result is equivalent to that which I gave.
 
if it is correct then ,we must prove
$\dfrac {a^2+b^2}{2}\leq (\dfrac{a+b}{2})^2=\dfrac {a^2+b^2}{4}+{ab}$
for all $a,b \in R$
${\therefore \dfrac {a^2+b^2}{4}\leq ab}$
how about if ab<0,then it does not fit
 
Last edited:
Albert said:
if it is correct then ,we must prove
$\dfrac {a^2+b^2}{2}\leq (\dfrac{a+b}{2})^2=\dfrac {a^2+b^2}{4}+{ab}$
for all $a,b \in R$
${\therefore \dfrac {a^2+b^2}{4}\leq ab}$
how about if ab<0,then it does not fit

It appears you are on the right track here, but have made some algebraic errors.
 
sorry ,I have made some algebraic errors:o

I will try to use another approach
 
Albert said:
sorry ,I have made some algebraic errors:o

I will try to use another approach

Your errors are quite minor, and in fact leads to a much simpler approach than I have. (Nod)
 
I think ,I should take a rest ,and have a cup of tea or coffee
 
for some x,and a,b if left side $\leq 0$
then it holds naturely
now we assume both sides are positive
if a=b then the original inequality holds
if a>b then :$1+b^2\leq left \,\, side \leq 1+a^2$
$1+b^2\leq right \,\, side \leq 1+a^2$
if a<b then :$1+a^2\leq left \,\, side \leq 1+b^2$
$1+a^2\leq right \,\, side \leq 1+b^2$

----------
 
Last edited:
  • #10
My solution:

I first expand the LHS of the inequality and get:

$$( {\sin x + a\cos x} )( {\sin x + b\cos x})=\sin^2 x+(a+b)\sin x \cos x+ab\cos^2 x$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=(1-\cos^2 x)+(a+b)\sin x \cos x+ab\cos^2 x$$$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\frac{ab+1}{2}+\left(\frac{a+b}{2}\right)\sin 2x+\left(\frac{ab-1}{2}\right)\cos 2x$$
Next, by applying the Cauchy-Schwarz Inequality to the part $$\left(\frac{a+b}{2}\right)\sin 2x+\left(\frac{ab-1}{2}\right)\cos 2x$$ yields

$$\left(\frac{a+b}{2}\right)\sin 2x+\left(\frac{ab-1}{2}\right)\cos 2x\le\sqrt{\left(\frac{a+b}{2}\right)^2+\left( \frac{ab-1}{2}\right)^2}\cdot\sqrt{\sin^2 2x+\cos^2 2x}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\le \sqrt{\left(\frac{a^2b^2+a^2+b^2+1}{4}\right)}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\le \frac{\sqrt{(1+a^2)(1+b^2)}}{2}$$Also, AM-GM inequality tells us that

$$\frac{(1+a^2)+(1+b^2)}{2}\ge\sqrt{(1+a^2)(1+b^2)}$$ or

$$\frac{(1+a^2)+(1+b^2)}{4}\ge\frac{\sqrt{(1+a^2)(1+b^2)}}{2}$$

$$\frac{2+a^2+b^2}{4}\ge\frac{\sqrt{(1+a^2)(1+b^2)}}{2}$$Finally, by combining all that we found in the above steps, we can now conclude that

$$( {\sin x + a\cos x} )( {\sin x + b\cos x})$$

$$=\frac{ab+1}{2}+\left(\frac{a+b}{2}\right)\sin 2x+\left(\frac{ab-1}{2}\right)\cos 2x$$

$$\le \frac{2+a^2+b^2}{4}+\frac{ab+1}{2}$$

$$\le \frac{2+a^2+b^2+2ab+2}{4}$$

$$\le \frac{4+a^2+b^2+2ab}{4}$$

$$\le 1+\frac{a^2+b^2+2ab}{4}$$

$$\le 1+\frac{(a+b)^2}{4}$$

$$\le 1+(\frac{a+b}{2})^2$$ (Q.E.D.)
 
  • #11
This is my proof:

Let:

[math]A=\tan^{\small{-1}}(a)[/math]

[math]B=\tan^{\small{-1}}(b)[/math]

Using a linear combination, we may write the inequality as:

[math]\sqrt{(1+a^2)(1+b^2)}\sin(x+A)\sin(x+B)\le1+\left(\frac{a+b}{2} \right)^2[/math]

Let:

[math]f(x)=\sin(x+A)\sin(x+B)[/math]

Thus:

[math]f'(x)=\sin(2x+A+B)[/math]

[math]f''(x)=2\cos(2x+A+B)[/math]

Then $f(x)$ has its maxima for:

[math]x=\frac{(2k+1)\pi-(A+B)}{2}[/math] where [math]k\in\mathbb Z[/math]

We then find:

[math]f\left(\frac{(2k+1)\pi-(A+B)}{2} \right)=\sin\left(\frac{(2k+1)\pi-(A+B)}{2}+A \right)\sin\left(\frac{(2k+1)\pi-(A+B)}{2}+B \right)=[/math]

[math]\sin\left(\frac{(2k+1)\pi+A-B}{2} \right)\sin\left(\frac{(2k+1)\pi-A+B}{2} \right)=[/math]

[math]\frac{\cos(A-B)-\cos((2k+1)\pi)}{2}=\frac{\cos(A-B)+1}{2}=[/math]

[math]\frac{\cos(A)\cos(B)+\sin(A)\sin(B)+1}{2}=[/math]

[math]\frac{1+ab+\sqrt{(1+a^2)(1+b^2)}}{2\sqrt{(1+a^2)(1+b^2)}}[/math]

Now, we need only show:

[math]\sqrt{(1+a^2)(1+b^2)}f\left(\frac{(2k+1)\pi-(A+B)}{2} \right)\le1+\left(\frac{a+b}{2} \right)^2[/math]

[math]\frac{1+ab+\sqrt{(1+a^2)(1+b^2)}}{2}\le1+\left( \frac{a+b}{2} \right)^2[/math]

[math]2+2ab+2\sqrt{(1+a^2)(1+b^2)}\le4+a^2+2ab+b^2[/math]

[math]2\sqrt{(1+a^2)(1+b^2)}\le2+a^2+b^2[/math]

[math]4a^2b^2+4a^2+4b^2+4\le a^4+2a^2b^2+4a^2+b^4+4b^2+4[/math]

[math]2a^2b^2\le a^4+b^4[/math]

[math]0\le(a^2-b^2)^2[/math]
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K