Can you prove this trigonometric inequality?

Click For Summary

Discussion Overview

The discussion revolves around proving a specific trigonometric inequality involving sine and cosine functions, expressed as \(\left( {\sin x + a\cos x} \right)\left( {\sin x + b\cos x} \right) \leq 1 + \left( \frac{a + b}{2} \right)^2\). Participants explore various approaches, algebraic manipulations, and conditions under which the inequality holds.

Discussion Character

  • Mathematical reasoning, Debate/contested

Main Points Raised

  • Post 1 presents the inequality to be proven.
  • Post 2 and Post 3 propose an approach using the Cauchy-Schwarz inequality, questioning the correctness of the right side of the inequality.
  • Post 4 and Post 5 suggest proving a related inequality \(\dfrac {a^2+b^2}{2}\leq (\dfrac{a+b}{2})^2\) and raise concerns about cases where \(ab < 0\).
  • Post 6 acknowledges algebraic errors and indicates a willingness to explore a different approach.
  • Post 9 discusses the behavior of the inequality under different conditions for \(a\) and \(b\), including cases where \(a = b\) and when \(a > b\) or \(a < b\).
  • Post 10 and Post 11 indicate the intention to provide a proof, but details are not included.

Areas of Agreement / Disagreement

Participants express differing views on the correctness of the proposed approaches and the validity of certain algebraic manipulations. No consensus is reached regarding the proof of the inequality, and multiple competing views remain.

Contextual Notes

Participants note potential algebraic errors and the need for careful consideration of cases where \(ab < 0\). The discussion reflects uncertainty regarding the assumptions made in the proofs and the conditions under which the inequality holds.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Show that :

[math]\left( {\sin x + a\cos x} \right)\left( {\sin x + b\cos x} \right) \leq 1 + \left( \frac{a + b}{2} \right)^2[/math]
 
Mathematics news on Phys.org
MarkFL said:
Show that :

[math]\left( {\sin x + a\cos x} \right)\left( {\sin x + b\cos x} \right) \leq 1 + \left( \frac{a + b}{2} \right)^2[/math]
left side=
[math]\left( {\sin x + a\cos x} \right)\left( {\sin x + b\cos x} \right)\leq \sqrt{1+a^2}\times \sqrt{1+b^2}[/math]
$\leq\dfrac{1+a^2+1+b^2}{2}=1+\dfrac {a^2+b^2}{2}$
Are you sure , right side is correct ?
 
Last edited:
Albert said:
left side=
[math]\left( {\sin x + a\cos x} \right)\left( {\sin x + b\cos x} \right)\leq \sqrt{1+a^2}\times \sqrt{1+b^2}[/math]
$\leq\dfrac{1+a^2+1+b^2}{2}=1+\dfrac {a^2+b^2}{2}$
Are you sure , right side is correct ?

Yes, it is correct...it appears you are assuming the two sinusoidal factors are in phase with one another, that is for $a=b$. In this case, then your result is equivalent to that which I gave.
 
if it is correct then ,we must prove
$\dfrac {a^2+b^2}{2}\leq (\dfrac{a+b}{2})^2=\dfrac {a^2+b^2}{4}+{ab}$
for all $a,b \in R$
${\therefore \dfrac {a^2+b^2}{4}\leq ab}$
how about if ab<0,then it does not fit
 
Last edited:
Albert said:
if it is correct then ,we must prove
$\dfrac {a^2+b^2}{2}\leq (\dfrac{a+b}{2})^2=\dfrac {a^2+b^2}{4}+{ab}$
for all $a,b \in R$
${\therefore \dfrac {a^2+b^2}{4}\leq ab}$
how about if ab<0,then it does not fit

It appears you are on the right track here, but have made some algebraic errors.
 
sorry ,I have made some algebraic errors:o

I will try to use another approach
 
Albert said:
sorry ,I have made some algebraic errors:o

I will try to use another approach

Your errors are quite minor, and in fact leads to a much simpler approach than I have. (Nod)
 
I think ,I should take a rest ,and have a cup of tea or coffee
 
for some x,and a,b if left side $\leq 0$
then it holds naturely
now we assume both sides are positive
if a=b then the original inequality holds
if a>b then :$1+b^2\leq left \,\, side \leq 1+a^2$
$1+b^2\leq right \,\, side \leq 1+a^2$
if a<b then :$1+a^2\leq left \,\, side \leq 1+b^2$
$1+a^2\leq right \,\, side \leq 1+b^2$

----------
 
Last edited:
  • #10
My solution:

I first expand the LHS of the inequality and get:

$$( {\sin x + a\cos x} )( {\sin x + b\cos x})=\sin^2 x+(a+b)\sin x \cos x+ab\cos^2 x$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=(1-\cos^2 x)+(a+b)\sin x \cos x+ab\cos^2 x$$$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\frac{ab+1}{2}+\left(\frac{a+b}{2}\right)\sin 2x+\left(\frac{ab-1}{2}\right)\cos 2x$$
Next, by applying the Cauchy-Schwarz Inequality to the part $$\left(\frac{a+b}{2}\right)\sin 2x+\left(\frac{ab-1}{2}\right)\cos 2x$$ yields

$$\left(\frac{a+b}{2}\right)\sin 2x+\left(\frac{ab-1}{2}\right)\cos 2x\le\sqrt{\left(\frac{a+b}{2}\right)^2+\left( \frac{ab-1}{2}\right)^2}\cdot\sqrt{\sin^2 2x+\cos^2 2x}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\le \sqrt{\left(\frac{a^2b^2+a^2+b^2+1}{4}\right)}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\le \frac{\sqrt{(1+a^2)(1+b^2)}}{2}$$Also, AM-GM inequality tells us that

$$\frac{(1+a^2)+(1+b^2)}{2}\ge\sqrt{(1+a^2)(1+b^2)}$$ or

$$\frac{(1+a^2)+(1+b^2)}{4}\ge\frac{\sqrt{(1+a^2)(1+b^2)}}{2}$$

$$\frac{2+a^2+b^2}{4}\ge\frac{\sqrt{(1+a^2)(1+b^2)}}{2}$$Finally, by combining all that we found in the above steps, we can now conclude that

$$( {\sin x + a\cos x} )( {\sin x + b\cos x})$$

$$=\frac{ab+1}{2}+\left(\frac{a+b}{2}\right)\sin 2x+\left(\frac{ab-1}{2}\right)\cos 2x$$

$$\le \frac{2+a^2+b^2}{4}+\frac{ab+1}{2}$$

$$\le \frac{2+a^2+b^2+2ab+2}{4}$$

$$\le \frac{4+a^2+b^2+2ab}{4}$$

$$\le 1+\frac{a^2+b^2+2ab}{4}$$

$$\le 1+\frac{(a+b)^2}{4}$$

$$\le 1+(\frac{a+b}{2})^2$$ (Q.E.D.)
 
  • #11
This is my proof:

Let:

[math]A=\tan^{\small{-1}}(a)[/math]

[math]B=\tan^{\small{-1}}(b)[/math]

Using a linear combination, we may write the inequality as:

[math]\sqrt{(1+a^2)(1+b^2)}\sin(x+A)\sin(x+B)\le1+\left(\frac{a+b}{2} \right)^2[/math]

Let:

[math]f(x)=\sin(x+A)\sin(x+B)[/math]

Thus:

[math]f'(x)=\sin(2x+A+B)[/math]

[math]f''(x)=2\cos(2x+A+B)[/math]

Then $f(x)$ has its maxima for:

[math]x=\frac{(2k+1)\pi-(A+B)}{2}[/math] where [math]k\in\mathbb Z[/math]

We then find:

[math]f\left(\frac{(2k+1)\pi-(A+B)}{2} \right)=\sin\left(\frac{(2k+1)\pi-(A+B)}{2}+A \right)\sin\left(\frac{(2k+1)\pi-(A+B)}{2}+B \right)=[/math]

[math]\sin\left(\frac{(2k+1)\pi+A-B}{2} \right)\sin\left(\frac{(2k+1)\pi-A+B}{2} \right)=[/math]

[math]\frac{\cos(A-B)-\cos((2k+1)\pi)}{2}=\frac{\cos(A-B)+1}{2}=[/math]

[math]\frac{\cos(A)\cos(B)+\sin(A)\sin(B)+1}{2}=[/math]

[math]\frac{1+ab+\sqrt{(1+a^2)(1+b^2)}}{2\sqrt{(1+a^2)(1+b^2)}}[/math]

Now, we need only show:

[math]\sqrt{(1+a^2)(1+b^2)}f\left(\frac{(2k+1)\pi-(A+B)}{2} \right)\le1+\left(\frac{a+b}{2} \right)^2[/math]

[math]\frac{1+ab+\sqrt{(1+a^2)(1+b^2)}}{2}\le1+\left( \frac{a+b}{2} \right)^2[/math]

[math]2+2ab+2\sqrt{(1+a^2)(1+b^2)}\le4+a^2+2ab+b^2[/math]

[math]2\sqrt{(1+a^2)(1+b^2)}\le2+a^2+b^2[/math]

[math]4a^2b^2+4a^2+4b^2+4\le a^4+2a^2b^2+4a^2+b^4+4b^2+4[/math]

[math]2a^2b^2\le a^4+b^4[/math]

[math]0\le(a^2-b^2)^2[/math]
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K