MHB Can You Separate Real and Imaginary Parts of $\sin^{-1}(e^{i\theta})$?

  • Thread starter Thread starter Amer
  • Start date Start date
  • Tags Tags
    Imaginary
Click For Summary
The discussion centers on the challenge of separating the real and imaginary parts of the expression $\sin^{-1}(e^{i\theta})$. Participants explore the relationship between the sine function and complex exponentials, attempting to express $\sin u = e^{i\theta}$ in terms of real and imaginary components. A solution is proposed that utilizes the Maxima software to derive the real part as $\mathrm{atan2}$ and the imaginary part involving logarithmic functions. The conversation highlights the complexity of the problem and the mathematical techniques involved in tackling it. Overall, the separation of real and imaginary parts proves to be a non-trivial task.
Amer
Messages
259
Reaction score
0
Is it possible to separate imaginary part from the real part in this question

$\sin ^{-1} ( e^{i\theta}) $

I tired to find u such that

$\sin u = e^{i\theta} $

$ \sin u = \cos \theta + i sin \theta $

$ \sin (x + iy) = \cos \theta + i \sin \theta $

$ \sin x \cos iy + \sin iy \cos x = \cos \theta + i \sin \theta $

$\sin x \cosh y + i \sinh y \cos x = \cos \theta + i \sin \theta $
but this is not easy

Thanks
 
Physics news on Phys.org
Amer said:
Is it possible to separate imaginary part from the real part in this question

$\sin ^{-1} ( e^{i\theta}) $

I tired to find u such that

$\sin u = e^{i\theta} $

$ \sin u = \cos \theta + i sin \theta $

$ \sin (x + iy) = \cos \theta + i \sin \theta $

$ \sin x \cos iy + \sin iy \cos x = \cos \theta + i \sin \theta $

$\sin x \cosh y + i \sinh y \cos x = \cos \theta + i \sin \theta $
but this is not easy

Thanks

You just have. The real part is when $\sin x \cosh y = \cos\theta$.
 
Amer said:
Is it possible to separate imaginary part from the real part in this question

$\sin ^{-1} ( e^{i\theta}) $

I tired to find u such that

$\sin u = e^{i\theta} $

$ \sin u = \cos \theta + i sin \theta $

$ \sin (x + iy) = \cos \theta + i \sin \theta $

$ \sin x \cos iy + \sin iy \cos x = \cos \theta + i \sin \theta $

$\sin x \cosh y + i \sinh y \cos x = \cos \theta + i \sin \theta $
but this is not easy

Thanks

Hi Amer, :)

Finding the real and imaginary parts seem not to be easy and this is what I got using Maxima. Hope this helps. :)

\[\mbox{Re}\left[\sin ^{-1} ( e^{i\theta})\right]=\mathrm{atan2}\left( \mathrm{sin}\left( \frac{\mathrm{atan2}\left( 0,1-{e}^{2\,i\,x}\right) }{2}\right) \,\sqrt{\left| {e}^{2\,i\,x}-1\right| }+{e}^{i\,x},\mathrm{cos}\left( \frac{\mathrm{atan2}\left( 0,1-{e}^{2\,i\,x}\right) }{2}\right) \,\sqrt{\left| {e}^{2\,i\,x}-1\right| }\right)\]

and

\[\mbox{Im}\left[\sin ^{-1} ( e^{i\theta})\right]=-\frac{\mathrm{log}\left( {\mathrm{cos}\left( \frac{\mathrm{atan2}\left( 0,1-{e}^{2\,i\,x}\right) }{2}\right) }^{2}\,\left| {e}^{2\,i\,x}-1\right| +{\left( \mathrm{sin}\left( \frac{\mathrm{atan2}\left( 0,1-{e}^{2\,i\,x}\right) }{2}\right) \,\sqrt{\left| {e}^{2\,i\,x}-1\right| }+{e}^{i\,x}\right) }^{2}\right) }{2}\]

where, \(\mbox{atan}2(y,x)\) is the value of \(\mbox{atan}\left(\frac{y}{x}\right)\) in the interval \([-\pi,\pi]\).

Kind Regards,
Sudharaka.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K