Can You Simplify This Complex Square Root Expression?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The forum discussion centers on the simplification of the complex square root expression $$\frac{\displaystyle\sum_{k=1}^{2499}\sqrt{10+{\sqrt{50+\sqrt{k}}}}}{\displaystyle\sum_{k=1}^{2499}\sqrt{10-{\sqrt{50+\sqrt{k}}}}}$$. Participants are encouraged to engage with the Problem of the Week (POTW) and explore the suggested solutions provided for previous problems. The discussion highlights the ongoing challenge of simplifying nested square roots without the aid of calculators, emphasizing the importance of analytical skills in mathematics.

PREREQUISITES
  • Understanding of nested square root expressions
  • Familiarity with summation notation
  • Basic knowledge of algebraic manipulation
  • Experience with mathematical problem-solving techniques
NEXT STEPS
  • Research techniques for simplifying nested square roots
  • Explore advanced summation methods in mathematics
  • Learn about mathematical problem-solving strategies for competitions
  • Study the properties of square roots and their applications in algebra
USEFUL FOR

Mathematics enthusiasts, students preparing for math competitions, and educators seeking to enhance problem-solving skills in algebra and advanced mathematics.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Without using a calculator, simplify $$\frac{\displaystyle\sum_{k=1}^{2499}\sqrt{10+{\sqrt{50+\sqrt{k}}}}}{\displaystyle\sum_{k=1}^{2499}\sqrt{10-{\sqrt{50+\sqrt{k}}}}}$$.-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Hi to all MHB
members!

Despite of the fact that last week's High School's POTW
is more difficult than usual, I am going to give members another week to attempt at a solution!(Smile)
 
No one answered last two week's problem,(Sadface) but you can find the suggested solution as below.
Let the numerator and the denominator be $A$ and $B$ respectively.

Letting $a_k=\sqrt{10+\sqrt{50+\sqrt{k}}}$ and $b_k=\sqrt{10-\sqrt{50+\sqrt{k}}}$, we can represent $A$ and $B$ as
$$A=\sum_{1}^{2499}a_k\\B=\sum_{1}^{2499}b_k$$,

Letting $p_k=\sqrt{50+\sqrt{k}}$ and $q_k=\sqrt{50-\sqrt{k}}$, since $p_k^2+q_k^2=10^2$ and $p_k>0$ and $q_k>0$, there exists a real number $0<x_k<\dfrac{\pi}{2}$ such that

$p_k=10\cos x_k\\q_k=10\sin x_k$

Then, we get
$a_k=\sqrt{10+10cosx_k}=\sqrt{10+10\left(2\cos^2\dfrac{x_k}{2}-1\right)}=\sqrt{20}\cos\dfrac{x_k}{2}$

$b_k=\sqrt{10-10cosx_k}=\sqrt{10-10\left(1-2\sin^2\dfrac{x_k}{2}\right)}=\sqrt{20}\sin\dfrac{x_k}{2}$

$$
\begin{align}a_{2500-k}&=\sqrt{10+\sqrt{50+\sqrt{(50+\sqrt k)(50-\sqrt k)}}}\\&=\sqrt{10+\sqrt{50+{p_kq_k}}}\\&=\sqrt{10+\sqrt{50+100\cos {x_k}\sin {x_k}}}\\&=\sqrt{10+\sqrt{50(\cos {x_k}+\sin {x_k})^2}}\\&=\sqrt{10+\sqrt{50}\cdot\sqrt2\sin \left(x_k+\frac{\pi}{4}\right)}\\&=\sqrt{10+10\cdot2\cos \left(\frac{x_k}{2}+\frac{\pi}{8}\right)\sin \left(\frac{x_k}{2}+\frac{\pi}{8}\right)}\\&=\sqrt{10\left(\cos \left(\frac{x_k}{2}+\frac{\pi}{8}\right)+\sin \left(\frac{x_k}{2}+\frac{\pi}{8}\right)\right)^2}\\&=\sqrt{10}\left(\cos \left(\frac{x_k}{2}+\frac{\pi}{8}\right)+\sin \left(\frac{x_k}{2}+\frac{\pi}{8}\right)\right)\\&=\frac{\left(\cos \left(\frac{\pi}{8}\right)+\sin \left(\frac{\pi}{8}\right)\right)a_k+\left(\cos \left(\frac{\pi}{8}\right)-\sin \left(\frac{\pi}{8}\right)\right)b_k}{\sqrt2}\\&=\sqrt{\frac{\sqrt2+1}{2\sqrt2}}a_k+\sqrt{\frac{\sqrt2-1}{2\sqrt2}}b_k\end{align}$$

Hence,
$A=\sqrt{\dfrac{\sqrt2+1}{2\sqrt2}}A+\sqrt{\dfrac{\sqrt2-1}{2\sqrt2}}B$

$\dfrac{A}{B}=1+\sqrt{2}+\sqrt{4+2\sqrt{2}}$

or

$$\frac{\displaystyle\sum_{k=1}^{2499}\sqrt{10+{\sqrt{50+\sqrt{k}}}}}{\displaystyle\sum_{k=1}^{2499}\sqrt{10-{\sqrt{50+\sqrt{k}}}}}=1+\sqrt{2}+\sqrt{4+2\sqrt{2}}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K