MHB Can You Simplify This Complex Square Root Expression?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion presents a problem of the week (POTW) involving the simplification of a complex square root expression. Participants are encouraged to solve the expression without using a calculator, specifically focusing on the sums involving square roots. The thread notes that previous problems have seen low engagement, prompting an extended opportunity for members to contribute solutions. A link to the guidelines for participating in the POTW is provided for reference. The thread emphasizes community involvement and encourages members to tackle the challenge.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Without using a calculator, simplify $$\frac{\displaystyle\sum_{k=1}^{2499}\sqrt{10+{\sqrt{50+\sqrt{k}}}}}{\displaystyle\sum_{k=1}^{2499}\sqrt{10-{\sqrt{50+\sqrt{k}}}}}$$.-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Hi to all MHB
members!

Despite of the fact that last week's High School's POTW
is more difficult than usual, I am going to give members another week to attempt at a solution!(Smile)
 
No one answered last two week's problem,(Sadface) but you can find the suggested solution as below.
Let the numerator and the denominator be $A$ and $B$ respectively.

Letting $a_k=\sqrt{10+\sqrt{50+\sqrt{k}}}$ and $b_k=\sqrt{10-\sqrt{50+\sqrt{k}}}$, we can represent $A$ and $B$ as
$$A=\sum_{1}^{2499}a_k\\B=\sum_{1}^{2499}b_k$$,

Letting $p_k=\sqrt{50+\sqrt{k}}$ and $q_k=\sqrt{50-\sqrt{k}}$, since $p_k^2+q_k^2=10^2$ and $p_k>0$ and $q_k>0$, there exists a real number $0<x_k<\dfrac{\pi}{2}$ such that

$p_k=10\cos x_k\\q_k=10\sin x_k$

Then, we get
$a_k=\sqrt{10+10cosx_k}=\sqrt{10+10\left(2\cos^2\dfrac{x_k}{2}-1\right)}=\sqrt{20}\cos\dfrac{x_k}{2}$

$b_k=\sqrt{10-10cosx_k}=\sqrt{10-10\left(1-2\sin^2\dfrac{x_k}{2}\right)}=\sqrt{20}\sin\dfrac{x_k}{2}$

$$
\begin{align}a_{2500-k}&=\sqrt{10+\sqrt{50+\sqrt{(50+\sqrt k)(50-\sqrt k)}}}\\&=\sqrt{10+\sqrt{50+{p_kq_k}}}\\&=\sqrt{10+\sqrt{50+100\cos {x_k}\sin {x_k}}}\\&=\sqrt{10+\sqrt{50(\cos {x_k}+\sin {x_k})^2}}\\&=\sqrt{10+\sqrt{50}\cdot\sqrt2\sin \left(x_k+\frac{\pi}{4}\right)}\\&=\sqrt{10+10\cdot2\cos \left(\frac{x_k}{2}+\frac{\pi}{8}\right)\sin \left(\frac{x_k}{2}+\frac{\pi}{8}\right)}\\&=\sqrt{10\left(\cos \left(\frac{x_k}{2}+\frac{\pi}{8}\right)+\sin \left(\frac{x_k}{2}+\frac{\pi}{8}\right)\right)^2}\\&=\sqrt{10}\left(\cos \left(\frac{x_k}{2}+\frac{\pi}{8}\right)+\sin \left(\frac{x_k}{2}+\frac{\pi}{8}\right)\right)\\&=\frac{\left(\cos \left(\frac{\pi}{8}\right)+\sin \left(\frac{\pi}{8}\right)\right)a_k+\left(\cos \left(\frac{\pi}{8}\right)-\sin \left(\frac{\pi}{8}\right)\right)b_k}{\sqrt2}\\&=\sqrt{\frac{\sqrt2+1}{2\sqrt2}}a_k+\sqrt{\frac{\sqrt2-1}{2\sqrt2}}b_k\end{align}$$

Hence,
$A=\sqrt{\dfrac{\sqrt2+1}{2\sqrt2}}A+\sqrt{\dfrac{\sqrt2-1}{2\sqrt2}}B$

$\dfrac{A}{B}=1+\sqrt{2}+\sqrt{4+2\sqrt{2}}$

or

$$\frac{\displaystyle\sum_{k=1}^{2499}\sqrt{10+{\sqrt{50+\sqrt{k}}}}}{\displaystyle\sum_{k=1}^{2499}\sqrt{10-{\sqrt{50+\sqrt{k}}}}}=1+\sqrt{2}+\sqrt{4+2\sqrt{2}}$$
 
Back
Top