MHB Can You Solve These Number Theory Challenges?

Poirot1
Messages
243
Reaction score
0
1)Prove that x,y are positive integers such that $x^2=y^2-9y$, then x=6 or 20.

2) Let p and q be distinct primes. Show that $p^{q-1}+q^{p-1}=1$ (modpq)

Hint for 2) Use Fermats little theorem.
 
Mathematics news on Phys.org
Re: 2 Number theory challenge

Poirot said:
1)Prove that x,y are positive integers such that $x^2=y^2-9y$, then x=6 or 20.
Multiply the equation by $4$ to get $4y^2-4x^2-36y=0$, which can be factorised as $(2y+2x-9)(2y-2x-9) = 81$. The only possibilities are $$2y+2x-9 = \left\{\begin{matrix}1\\ 3\\9 \\ 27 \\ 81 \end{matrix}\right.,\qquad 2y-2x-9 = \left\{\begin{matrix}81\\ 27\\ 9\\ 3 \\ 1 \end{matrix}\right.. $$ Subtract the second of these from the first to get $4x = \left\{\begin{matrix}-80\\ -24\\ \phantom{-1}0\\ \phantom{-}24 \\ \phantom{-}80 \end{matrix}\right..$ Reject the first three cases because $x$ is positive, and we are left with $x = 6$ or $20.$
 
Better method for 1) relies on the following fact: if a and b are coprime positive integers such that ab is a square, then a and b are both squares.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
15
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
2
Replies
91
Views
6K
Back
Top