MHB Can You Solve This Challenging Inequality Problem?

Click For Summary
The discussion revolves around solving a complex inequality problem involving positive real numbers a, b, c, and d, constrained by a series of inequalities. Participants are tasked with finding the minimum value of a specific expression that incorporates these variables. The inequalities establish bounds for each variable, leading to a structured approach to minimize the given expression. Key strategies include analyzing the relationships between the variables and applying optimization techniques. The challenge emphasizes the importance of understanding inequalities in mathematical problem-solving.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given positive real numbers $a,\,b,\,c$ and $d$ that satisfy the following inequalities:

$a \le 1 \\a+4b \le 17\\a+4b+16c \le273\\a+4b+16c+64d \le4369$

Find the minimum value of $\dfrac{1}{d}+\dfrac{2}{4c+d}+\dfrac{3}{16b+4c+d}+\dfrac{4}{64a+16b+4c+d}$.
 
Mathematics news on Phys.org
The coefficients in the denominators by necessity gives the following order of priority: $a,b,c,d$, i.e. $a$ must be our first choice and $a$ must necessarily be chosen as large as possible: $a = 1$, in order to maximize the last term in the given expression. The next to be prioritized is $b$ with the help of the second inequality, which implies: $b = 4$. Next in the priority list is $c$ and from the third inequality criterion, we have: $c = 16$. At last comes $d$ in the last inequality: $d = 64$.

Thus our minimum value must be: $\frac{4}{64} = \frac{1}{16}$.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K