Can You Successfully Factorize x^2+y^2+z^2-2xy-2yz-2zx?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factorize $x^2+y^2+z^2-2xy-2yz-2zx$.
 
Physics news on Phys.org
My attempt:

In order to perform the factorization, I must require: $y,z \ge 0$.

\[x^2+y^2+z^2-2xy-2zx-2yz \\\\= (x-y-z)^2-4yz \\\\=(x-y-z+2\sqrt{yz})(x-y-z-2\sqrt{yz}) \\\\=(x-((\sqrt{y})^2+(\sqrt{z})^2-2\sqrt{yz}))(x-((\sqrt{y})^2+(\sqrt{z})^2+2\sqrt{yz})) \\\\=(x-(\sqrt{y}-\sqrt{z})^2)(x-(\sqrt{y}+\sqrt{z})^2)\]
 
lfdahl said:
My attempt:

In order to perform the factorization, I must require: $y,z \ge 0$.

\[x^2+y^2+z^2-2xy-2zx-2yz \\\\= (x-y-z)^2-4yz \\\\=(x-y-z+2\sqrt{yz})(x-y-z-2\sqrt{yz}) \\\\=(x-((\sqrt{y})^2+(\sqrt{z})^2-2\sqrt{yz}))(x-((\sqrt{y})^2+(\sqrt{z})^2+2\sqrt{yz})) \\\\=(x-(\sqrt{y}-\sqrt{z})^2)(x-(\sqrt{y}+\sqrt{z})^2)\]
Very Well done, lfdahl! (Cool)
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K