Canceling Sin in Equation: 4/(3x+3) / 4/3x = 1

  • Thread starter Thread starter mattmannmf
  • Start date Start date
AI Thread Summary
The discussion centers on the equation Sin(4/(3x+3)) / Sin(4/3x) = 1, with participants debating whether the sine functions can be canceled. It is clarified that sine is an operation, not a variable, so cancellation is not valid. Instead, if sin(X) = sin(Y), it implies a relationship between X and Y, which can be explored further. The limit of the equation as x approaches infinity is also discussed, with suggestions to apply L'Hôpital's rule for evaluation. Overall, the conversation emphasizes the importance of understanding the properties of mathematical operations in solving equations.
mattmannmf
Messages
170
Reaction score
0
Dumb moment here...I have the following equation:

Sin (4/(3x+3)) / Sin (4/3x)= 1

can i cancel out the sin's?
 
Physics news on Phys.org
mattmannmf said:
Dumb moment here...I have the following equation:

Sin (4/(3x+3)) / Sin (4/3x)= 1

can i cancel out the sin's?

No you can't just randomly cancel it out.

But you can rearrange and say that if sinX=sinY then it implies that X=Y.
 
what if i was taking the limit of that equation:

Lim Sin (4/(3x+3)) / Sin (4/3x)
x->inf
 
I think the lim sinf(x) = sin lim f(x) is valid if I remember correctly.
 
mattmannmf said:
Dumb moment here...I have the following equation:

Sin (4/(3x+3)) / Sin (4/3x)= 1

can i cancel out the sin's?
As long as a isn't 0 you can do this:
\frac{a\cdot b}{a \cdot c} = \frac{b}{c}

Do you notice a significant difference between what I did compared to what you're trying to do?
 
mattmannmf said:
Dumb moment here...I have the following equation:

Sin (4/(3x+3)) / Sin (4/3x)= 1

can i cancel out the sin's?

Isn't this equivalent to

working on it-
 
Last edited:
No, you can't cancel the sins! Imagine this equation:

{\sin(x)\over\sin(y)}=2

If you cancel the sin's you get x/y=2, which is wrong. But what about taking the denominator to the other side? Then you can do something clever: if sin(x)=sin(y), then there is a known relation between x and y. Either they're equal or...
 
mattmannmf said:
Dumb moment here...I have the following equation:

Sin (4/(3x+3)) / Sin (4/3x)= 1

can i cancel out the sin's?

The letters s-i-n in \sin(x) are not variables. Those three letters together stand for an operation -- namely the operation of computing the sine of x. Similarly, we use the "+" symbol to refer to the operation of adding two values.

"Canceling" is the notion of dividing out by a common nonzero number, or by a common variable that stands for a nonzero number. "sin" is not a variable; it is an operation. Canceling is not a matter of "deleting letters and symbols" that appear in both the numerator and denominator.
 
rs1n said:
The letters s-i-n in \sin(x) are not variables. Those three letters together stand for an operation -- namely the operation of computing the sine of x. Similarly, we use the "+" symbol to refer to the operation of adding two values.

"Canceling" is the notion of dividing out by a common nonzero number, or by a common variable that stands for a nonzero number. "sin" is not a variable; it is an operation. Canceling is not a matter of "deleting letters and symbols" that appear in both the numerator and denominator.
Does this mean I can't do this...
\frac{sin x}{n} = 6
?
:biggrin: ?
 
  • #10
I thought that i=\sqrt{-1} I'm confused...:)
 
  • #11
Yeah, so funny... ;)

But if you want the limit, still can't cancel the sin's (cancel the sins... what would a priest think?) :P But you can do the obvious thing, try to substitute. You get sin(0)/sin(0) so, 0/0... why don't you try now L'Hôpital?
 
  • #12
I'd really like someone to cancel my sins...
 
  • #13
jrlaguna said:
Yeah, so funny... ;)

But if you want the limit, still can't cancel the sin's (cancel the sins... what would a priest think?) :P But you can do the obvious thing, try to substitute. You get sin(0)/sin(0) so, 0/0... why don't you try now L'Hôpital?

There this Wiki-link here

http://en.wikipedia.org/wiki/L'Hôpital's_rule

which gives some good examples on howto use L'Hospitals rule. Something which is a bit strange is that why is it to become a famous mathematician you have to so strange names? ;)

Only mathematician with a easy name to remember is Niels Henrik Abel and Cauchy.

:D Susanne
 
  • #14
Jrlaguna's conjecture: the higher you climb into advanced mathematics, the more strange the names of the theorems will get. A proof is required, but we have good evidence of that... what do you think of "Gupta-Bleuler quantization"?
 
  • #15
Susanne217 said:
There this Wiki-link here

http://en.wikipedia.org/wiki/L'Hôpital's_rule

which gives some good examples on howto use L'Hospitals rule. Something which is a bit strange is that why is it to become a famous mathematician you have to so strange names? ;)

Only mathematician with a easy name to remember is Niels Henrik Abel and Cauchy.

:D Susanne

I'd also include Euclid, Newton, Leibniz, and Neumann on that list, but in general I think you're right. I still can't remember how to spell Ramananan, and he seems to have done everything he can with numbers.
 
  • #16
Char. Limit said:
I'd also include Euclid, Newton, Leibniz, and Neumann on that list, but in general I think you're right. I still can't remember how to spell Ramananan, and he seems to have done everything he can with numbers.


Euclid, Newton off cause... :D If I invent a some theory which actually works one day, then I will change my name to L'Susanniwitz then I will surely be remembered :)
 
  • #17
You know the sense of humour of physicists... so when you come up with an important equation, this thread will come up and they will call it the Susanniwitz equation, no matter what your wishes are by then! Sorry, darling, you're dooooomed! :) :) :)
 
  • #18
jrlaguna said:
You know the sense of humour of physicists... so when you come up with an important equation, this thread will come up and they will call it the Susanniwitz equation, no matter what your wishes are by then! Sorry, darling, you're dooooomed! :) :) :)

Yeah you are right.

By the way back to the original problem and by using L'Hospital one runs into one of funny requirements that in order for that old french guys theory to work then the limit as show in the example has to be there. And I surgest to the original poster to test if the limit

\lim_{x \to \infty} \frac{f(x)}{g(x)} exists :blushing:
 
  • #19
Yeah, funny as it is the other discussion, let us focus, boys and girls, ok? :)

In this case, the limit does exist, the conditions on the theorem are met. Promised. The question poser has to work it out, though. (This is homework help.)
 
  • #20
jrlaguna said:
Yeah, funny as it is the other discussion, let us focus, boys and girls, ok? :)

In this case, the limit does exist, the conditions on the theorem are met. Promised. The question poser has to work it out, though. (This is homework help.)

The funny thing is I tested this problem on the equation-solver on old TI-92 and it claims that there are several solutions to the OP problem like the solutions are polynomial...
 
  • #21
You mean the eq, sin(...)/sin(...)=1, right? The limit has a unique solution, and he can find it with... L'H. :P
 
  • #22
The funny thing is I tested this problem on the equation-solver on old TI-92 and it claims that there are several solutions to the OP problem like the solutions are polynomial...

Your calculator is correct. Don't forget that if you have an equation of the type sin(x)=sin(y) then x=y+2pi*k is a solution for k an integer.
 
  • #23
Cyosis said:
Your calculator is correct. Don't forget that if you have an equation of the type sin(x)=sin(y) then x=y+2pi*k is a solution for k an integer.

Okay,

I guess even though I have dropped my TI Calculator in the floor, spilled Coca Cola on it, hell it still works :D
 
Back
Top