CDF, and setting the integral for this

  • Context: MHB 
  • Thread starter Thread starter nacho-man
  • Start date Start date
  • Tags Tags
    Cdf Integral
Click For Summary

Discussion Overview

The discussion revolves around setting up the bounds for a double integral related to a probability density function (p.d.f.) in a statistical context. Participants explore the integration process, particularly focusing on parts a), b), and d) of a problem involving conditional distributions and expectations.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • Some participants express confusion regarding the bounds for the double integral, considering whether to split the integral into two parts.
  • There is a discussion about the order of integration, with suggestions that integrating with respect to x first might be simpler, while others propose integrating with respect to y.
  • One participant initially attempts the integral with bounds $0$ to $\infty$ for x and $-\infty$ to x for y, but later revises this to $-x < y < x$ and $0 < x < \infty$.
  • Another participant clarifies the definition of the p.d.f. as $f(x,y) = c \cdot x \cdot e^{-x}$ for $x > 0$ and $|y| < x$, leading to a condition for c based on integration results.
  • There are multiple attempts to solve part d), with one participant noting they consistently arrive at 0 for the expected value, which they question.
  • Participants share their calculations for marginal and conditional distributions, with one noting a mistake in their previous calculations that affected their results.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best approach to the integration bounds and the expected value in part d). There are competing views on the integration process and the interpretation of results.

Contextual Notes

Some calculations depend on specific assumptions about the bounds and the definition of the p.d.f., which may not be universally agreed upon. There are unresolved steps in the integration process that lead to different conclusions.

nacho-man
Messages
166
Reaction score
0
Please refer to the attached image.

I can't quite get the bounds for question a) right. it's so confusing. Would it be wise to split the double integral into two parts? I guess that's usually favourable with when dealing with absolute values. But the bounds are still confusing me.

would it be easier to integrate with respect to x first, or w.r.t y?For x, it would just be 0 to infinity.

for y it would be -infinity to x ? whilst splitting the integral with respect to x? is this correct.
Actually i'll have a crack at it now. some as i make these question threads i tend to find a solution/or at least get closer to it.

Still, help/correction is very much appreciated.
Thanks!

edit: first attempt i did was
$c \int \int xe^{-x}dxdy = 1$ from $0 \ to \ \infty$ and $-\infty \ to \ x$. this was wrong, as it left me with a variable in my answer, so i will try again but int w.r.t y first.

edit 2: This also did not workedit 3: SOLVED PART A)
i used the bounds -x<y<x and 0<x<infinity
and obtained c= 1/2

edit 4: SOLVED PART B)
I got fy|x(x,y) = $\frac{1}{4x^{3}}$
and fx|y(x,y) = $xe^{-x}$

edit 5: I'm having trouble with part d

E[Y|X=e] = $\int y f_{x|y}(y|x)dy$
 

Attachments

  • CDF.jpg
    CDF.jpg
    14.7 KB · Views: 100
Last edited:
Physics news on Phys.org
nacho said:
Please refer to the attached image.

I can't quite get the bounds for question a) right. it's so confusing. Would it be wise to split the double integral into two parts? I guess that's usually favourable with when dealing with absolute values. But the bounds are still confusing me.

would it be easier to integrate with respect to x first, or w.r.t y?For x, it would just be 0 to infinity.

for y it would be -infinity to x ? whilst splitting the integral with respect to x? is this correct.
Actually i'll have a crack at it now. some as i make these question threads i tend to find a solution/or at least get closer to it.

Still, help/correction is very much appreciated.
Thanks!

edit: first attempt i did was
$c \int \int xe^{-x}dxdy = 1$ from $0 \ to \ \infty$ and $-\infty \ to \ x$. this was wrong, as it left me with a variable in my answer, so i will try again but int w.r.t y first.

edit 2: This also did not workedit 3: SOLVED PART A)
i used the bounds -x<y<x and 0<x<infinity
and obtained c= 1/2

edit 4: SOLVED PART B)
I got fy|x(x,y) = $\frac{1}{4x^{3}}$
and fx|y(x,y) = $xe^{-x}$

What is not full clear is that the p.d.f. is defined as...

$\displaystyle f(x,y)= c\ x\ e^{- x}\ (1)$

... for $\displaystyle x>0,\ |y|< x$ and is 0 in the rest of the x,y plane. In that case the condition for c is...

$\displaystyle c\ \int_{0}^{\infty} \int_{-x}^{+ x} x\ e^{-x}\ d x\ d y = c\ \int_{0}^{\infty} 2\ x^{2}\ e^{- x }\ dx = 4\ c = 1 \implies c= \frac{1}{4}\ (1)$

The remaining part can be attacked with the procedure we already saw...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
What is not full clear is that the p.d.f. is defined as...

$\displaystyle f(x,y)= c\ x\ e^{- x}\ (1)$

... for $\displaystyle x>0,\ |y|< x$ and is 0 in the rest of the x,y plane. In that case the condition for c is...

$\displaystyle c\ \int_{0}^{\infty} \int_{-x}^{+ x} x\ e^{-x}\ d x\ d y = c\ \int_{0}^{\infty} 2\ x^{2}\ e^{- x }\ dx = 4\ c = 1 \implies c= \frac{1}{4}\ (1)$

The remaining part can be attacked with the procedure we already saw...

Kind regards

$\chi$ $\sigma$

thanks, i had just forgotten to multiply by 2 during a step, leading to me getting 1/2.

can you assist witg part d?i keep getting 0, which i think is wrong
 
nacho said:
thanks, i had just forgotten to multiply by 2 during a step, leading to me getting 1/2.

can you assist witg part d?i keep getting 0, which i think is wrong

Answering to point d) is performed in three steps...

...first we conpute the marginal distribution of X...

$\displaystyle f_{x} (x) = \frac{1}{4}\ \int_{- x}^{+ x} x\ e^{- x}\ dx = \frac{x^{2}}{2}\ e^{-x}\ (1)$

... second the conditional distribution function of Y...

$\displaystyle f_{y} (y | X=x) = \frac{f(x,y)}{f_{x} (x)} = \frac{1} {2\ x}\ (2)$

... and third...

$\displaystyle E \{Y | X=x \} = \int_{- x}^{ + x} \frac{y}{2\ x}\ d y =0\ (3)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Answering to point d) is performed in three steps...

...first we conpute the marginal distribution of X...

$\displaystyle f_{x} (x) = \frac{1}{4}\ \int_{- x}^{+ x} x\ e^{- x}\ dx = \frac{x^{2}}{2}\ e^{-x}\ (1)$

... second the conditional distribution function of Y...

$\displaystyle f_{y} (y | X=x) = \frac{f(x,y)}{f_{x} (x)} = \frac{1} {2\ x}\ (2)$

... and third...

$\displaystyle E \{Y | X=x \} = \int_{- x}^{ + x} \frac{y}{2\ x}\ d y =0\ (3)$

Kind regards

$\chi$ $\sigma$

ah, i was right then, gues i should be more confident
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K