MHB CDF, and setting the integral for this

  • Thread starter Thread starter nacho-man
  • Start date Start date
  • Tags Tags
    Cdf Integral
nacho-man
Messages
166
Reaction score
0
Please refer to the attached image.

I can't quite get the bounds for question a) right. it's so confusing. Would it be wise to split the double integral into two parts? I guess that's usually favourable with when dealing with absolute values. But the bounds are still confusing me.

would it be easier to integrate with respect to x first, or w.r.t y?For x, it would just be 0 to infinity.

for y it would be -infinity to x ? whilst splitting the integral with respect to x? is this correct.
Actually i'll have a crack at it now. some as i make these question threads i tend to find a solution/or at least get closer to it.

Still, help/correction is very much appreciated.
Thanks!

edit: first attempt i did was
$c \int \int xe^{-x}dxdy = 1$ from $0 \ to \ \infty$ and $-\infty \ to \ x$. this was wrong, as it left me with a variable in my answer, so i will try again but int w.r.t y first.

edit 2: This also did not workedit 3: SOLVED PART A)
i used the bounds -x<y<x and 0<x<infinity
and obtained c= 1/2

edit 4: SOLVED PART B)
I got fy|x(x,y) = $\frac{1}{4x^{3}}$
and fx|y(x,y) = $xe^{-x}$

edit 5: I'm having trouble with part d

E[Y|X=e] = $\int y f_{x|y}(y|x)dy$
 

Attachments

  • CDF.jpg
    CDF.jpg
    14.7 KB · Views: 85
Last edited:
Physics news on Phys.org
nacho said:
Please refer to the attached image.

I can't quite get the bounds for question a) right. it's so confusing. Would it be wise to split the double integral into two parts? I guess that's usually favourable with when dealing with absolute values. But the bounds are still confusing me.

would it be easier to integrate with respect to x first, or w.r.t y?For x, it would just be 0 to infinity.

for y it would be -infinity to x ? whilst splitting the integral with respect to x? is this correct.
Actually i'll have a crack at it now. some as i make these question threads i tend to find a solution/or at least get closer to it.

Still, help/correction is very much appreciated.
Thanks!

edit: first attempt i did was
$c \int \int xe^{-x}dxdy = 1$ from $0 \ to \ \infty$ and $-\infty \ to \ x$. this was wrong, as it left me with a variable in my answer, so i will try again but int w.r.t y first.

edit 2: This also did not workedit 3: SOLVED PART A)
i used the bounds -x<y<x and 0<x<infinity
and obtained c= 1/2

edit 4: SOLVED PART B)
I got fy|x(x,y) = $\frac{1}{4x^{3}}$
and fx|y(x,y) = $xe^{-x}$

What is not full clear is that the p.d.f. is defined as...

$\displaystyle f(x,y)= c\ x\ e^{- x}\ (1)$

... for $\displaystyle x>0,\ |y|< x$ and is 0 in the rest of the x,y plane. In that case the condition for c is...

$\displaystyle c\ \int_{0}^{\infty} \int_{-x}^{+ x} x\ e^{-x}\ d x\ d y = c\ \int_{0}^{\infty} 2\ x^{2}\ e^{- x }\ dx = 4\ c = 1 \implies c= \frac{1}{4}\ (1)$

The remaining part can be attacked with the procedure we already saw...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
What is not full clear is that the p.d.f. is defined as...

$\displaystyle f(x,y)= c\ x\ e^{- x}\ (1)$

... for $\displaystyle x>0,\ |y|< x$ and is 0 in the rest of the x,y plane. In that case the condition for c is...

$\displaystyle c\ \int_{0}^{\infty} \int_{-x}^{+ x} x\ e^{-x}\ d x\ d y = c\ \int_{0}^{\infty} 2\ x^{2}\ e^{- x }\ dx = 4\ c = 1 \implies c= \frac{1}{4}\ (1)$

The remaining part can be attacked with the procedure we already saw...

Kind regards

$\chi$ $\sigma$

thanks, i had just forgotten to multiply by 2 during a step, leading to me getting 1/2.

can you assist witg part d?i keep getting 0, which i think is wrong
 
nacho said:
thanks, i had just forgotten to multiply by 2 during a step, leading to me getting 1/2.

can you assist witg part d?i keep getting 0, which i think is wrong

Answering to point d) is performed in three steps...

...first we conpute the marginal distribution of X...

$\displaystyle f_{x} (x) = \frac{1}{4}\ \int_{- x}^{+ x} x\ e^{- x}\ dx = \frac{x^{2}}{2}\ e^{-x}\ (1)$

... second the conditional distribution function of Y...

$\displaystyle f_{y} (y | X=x) = \frac{f(x,y)}{f_{x} (x)} = \frac{1} {2\ x}\ (2)$

... and third...

$\displaystyle E \{Y | X=x \} = \int_{- x}^{ + x} \frac{y}{2\ x}\ d y =0\ (3)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Answering to point d) is performed in three steps...

...first we conpute the marginal distribution of X...

$\displaystyle f_{x} (x) = \frac{1}{4}\ \int_{- x}^{+ x} x\ e^{- x}\ dx = \frac{x^{2}}{2}\ e^{-x}\ (1)$

... second the conditional distribution function of Y...

$\displaystyle f_{y} (y | X=x) = \frac{f(x,y)}{f_{x} (x)} = \frac{1} {2\ x}\ (2)$

... and third...

$\displaystyle E \{Y | X=x \} = \int_{- x}^{ + x} \frac{y}{2\ x}\ d y =0\ (3)$

Kind regards

$\chi$ $\sigma$

ah, i was right then, gues i should be more confident
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top