Cdf, expectation, and variance of a random continuous variable

Click For Summary
SUMMARY

The discussion focuses on the probability density function f(x) = b[1-(4x/10-6/10)^2] for the interval 1.5 < x < 4, where b is determined to be 3/5 to ensure f(x) is a valid density function. The cumulative distribution function (CDF) F(x) is derived as (-4x^3/125 + 18x^2/125 + 48x/125 - 99/125). The expectation E[X] is calculated to be 2.4375, and the variance Var[X] is found to be 0.3711. The discussion concludes with a method to calculate the probability that X is within one standard deviation from the mean using integration.

PREREQUISITES
  • Understanding of probability density functions (PDF)
  • Knowledge of cumulative distribution functions (CDF)
  • Familiarity with expectation and variance calculations
  • Proficiency in integration techniques
NEXT STEPS
  • Learn how to calculate probabilities using integration of PDFs
  • Study the properties of cumulative distribution functions (CDFs)
  • Explore the relationship between variance and standard deviation
  • Investigate advanced topics in continuous random variables
USEFUL FOR

Statisticians, data scientists, and students studying probability theory who seek to deepen their understanding of continuous random variables and their statistical properties.

marcadams267
Messages
19
Reaction score
1
Given the probability density function f(x) = b[1-(4x/10-6/10)^2] for 1.5 < x <4. and f(x) = 0 elsewhere.

1. What is the value of b such that f(x) becomes a valid density function

2. What is the cumulative distribution function F(x) of f(x)

3. What is the Expectation of X, E[X]

4. What is the Variance of X, Var[X]

5. What is the probability that X is within one standard deviation from the meanSo far, I've gotten b by integrating the function from 1.5 to 4 and setting it equal to 1, thus getting b = 3/5.
Plugging b into the function, I also integrated it from 1.5 to x, to get a cdf of (-4x^3/125 + 18x^2/125 + 48x/125 - 99/125)
To get the E[X], I integrated f(x) from 1.5 to 4 to get 2.4375
To solve for the variance i used the equation E[X^2] - E[X]^2 and got 0.3711

However, help would be appreciated for number 5 as I am not even sure where to start on that one.
 
Last edited:
Physics news on Phys.org
marcadams267 said:
Given the probability density function f(x) = b[1-(4x/10-6/10)^2] for 1.5 < x <4. and f(x) = 0 elsewhere.

1. What is the value of b such that f(x) becomes a valid density function

2. What is the cumulative distribution function F(x) of f(x)

3. What is the Expectation of X, E[X]

4. What is the Variance of X, Var[X]

5. What is the probability that X is within one standard deviation from the meanSo far, I've gotten b by integrating the function from 1.5 to 4 and setting it equal to 1, thus getting b = 3/5.
Plugging b into the function, I also integrated it from 1.5 to x, to get a cdf of (-4x^3/125 + 18x^2/125 + 48x/125 - 99/125)
To get the E[X], I integrated f(x) from 1.5 to 4 to get 2.4375
To solve for the variance i used the equation E[X^2] - E[X]^2 and got 0.3711

However, help would be appreciated for number 5 as I am not even sure where to start on that one.

Hi marcadams267, welcome to MHB!

The probability that $X$ is between two arbitrary values $a_1 \le a_2$ is:
$$P(a_1<X<a_2)=\int_{a_1}^{a_2}f(x)\,dx$$
The standard deviation $\sigma[X]$ is the square root of the variance:
$$\sigma[X]=\sqrt{\operatorname{Var}[X]}$$
So in this case:
$$P(\text{X is within one standard deviation from the mean}) \\= P(E[X]-\sigma[X]<X<E[X]+\sigma[X]) \\= \int_{E[X]-\sigma[X]}^{E[X]+\sigma[X]} f(x)\,dx$$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K