MHB Cdf, expectation, and variance of a random continuous variable

Click For Summary
The probability density function f(x) is defined as b[1-(4x/10-6/10)^2] for 1.5 < x < 4, with b calculated as 3/5 to ensure it is a valid density function. The cumulative distribution function F(x) is derived as (-4x^3/125 + 18x^2/125 + 48x/125 - 99/125). The expectation E[X] is found to be 2.4375, while the variance Var[X] is calculated as 0.3711. To find the probability that X is within one standard deviation from the mean, the integral of f(x) over the interval defined by E[X] ± σ[X] is necessary.
marcadams267
Messages
19
Reaction score
1
Given the probability density function f(x) = b[1-(4x/10-6/10)^2] for 1.5 < x <4. and f(x) = 0 elsewhere.

1. What is the value of b such that f(x) becomes a valid density function

2. What is the cumulative distribution function F(x) of f(x)

3. What is the Expectation of X, E[X]

4. What is the Variance of X, Var[X]

5. What is the probability that X is within one standard deviation from the meanSo far, I've gotten b by integrating the function from 1.5 to 4 and setting it equal to 1, thus getting b = 3/5.
Plugging b into the function, I also integrated it from 1.5 to x, to get a cdf of (-4x^3/125 + 18x^2/125 + 48x/125 - 99/125)
To get the E[X], I integrated f(x) from 1.5 to 4 to get 2.4375
To solve for the variance i used the equation E[X^2] - E[X]^2 and got 0.3711

However, help would be appreciated for number 5 as I am not even sure where to start on that one.
 
Last edited:
Physics news on Phys.org
marcadams267 said:
Given the probability density function f(x) = b[1-(4x/10-6/10)^2] for 1.5 < x <4. and f(x) = 0 elsewhere.

1. What is the value of b such that f(x) becomes a valid density function

2. What is the cumulative distribution function F(x) of f(x)

3. What is the Expectation of X, E[X]

4. What is the Variance of X, Var[X]

5. What is the probability that X is within one standard deviation from the meanSo far, I've gotten b by integrating the function from 1.5 to 4 and setting it equal to 1, thus getting b = 3/5.
Plugging b into the function, I also integrated it from 1.5 to x, to get a cdf of (-4x^3/125 + 18x^2/125 + 48x/125 - 99/125)
To get the E[X], I integrated f(x) from 1.5 to 4 to get 2.4375
To solve for the variance i used the equation E[X^2] - E[X]^2 and got 0.3711

However, help would be appreciated for number 5 as I am not even sure where to start on that one.

Hi marcadams267, welcome to MHB!

The probability that $X$ is between two arbitrary values $a_1 \le a_2$ is:
$$P(a_1<X<a_2)=\int_{a_1}^{a_2}f(x)\,dx$$
The standard deviation $\sigma[X]$ is the square root of the variance:
$$\sigma[X]=\sqrt{\operatorname{Var}[X]}$$
So in this case:
$$P(\text{X is within one standard deviation from the mean}) \\= P(E[X]-\sigma[X]<X<E[X]+\sigma[X]) \\= \int_{E[X]-\sigma[X]}^{E[X]+\sigma[X]} f(x)\,dx$$
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K