Graduate Center of a linear algebraic group

Click For Summary
In the context of linear algebraic groups, the dimension of the center, denoted as c(m), has established bounds: c(0)=0, c(1)=1, and for m≠0, n^2 ≥ c(m) ≥ 1. Schur's Lemma indicates that c(n^2)=1, while examples exist of groups with trivial or finite centers, suggesting c(m) can be zero even for nonzero m. The discussion raises questions about the existence of significant upper and lower bounds for c(m) beyond the known limits, particularly exploring the behavior of the dimension of the center in relation to the group's dimension. The inquiry also considers the characteristics of typical centers in randomly chosen subgroups and the potential for larger abelian subgroups within GL(n).
fresh_42
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
2024 Award
Messages
20,815
Reaction score
28,447
TL;DR
linear algebra; center; groups
Let ##G\leq GL(n)## be a linear algebraic group of dimension ##m,## and ##C## its ##c##-dimensional center. What do we know about lower and upper bounds of ##c=c(m)\,\text{?}##

Clearly ##c(0)=0, c(1)=1## and ##n^2\geq c(m)\geq 1## for ##m\neq 0.## By Schur's Lemma we also know ##c(n^2)=1##. Did anybody ever investigated what happens in between?
 
Physics news on Phys.org
There are plenty of groups with trivial or finite centre, hence zero dimensional. So ##c(m)## can be zero for nonzero ##m##.
 
martinbn said:
There are plenty of groups with trivial or finite centre, hence zero dimensional. So ##c(m)## can be zero for nonzero ##m##.
The identity is always in the center.
 
fresh_42 said:
The identity is always in the center.
Of course, but it is a single point and has dimension 0.
 
martinbn said:
Of course, but it is a single point and has dimension 0.
Sure, for some simple S-groups, of which we know the centers. That is if ##\mathbb{F}\cdot 1 \cap G <\infty ,## which are very specific cases. My question was more generic when we have ##\mathbb{F}\cdot 1 \subseteq G.## A few cases of finite centers doesn't answer the question: Are there significant upper and lower bounds for ##c(m)## except ##n^2## and ##1\,\text{?}## Or ##0##, I don't care. E.g. what is the maximum of ##c(m)\,\text{?}## ##n\,\text{?}## or ##n^\eta,## and what is the maximal value of the exponent?
 
If the dimension is ##n^2## then it must contain some small open ball around the identity, which is impossible since ##GL(n)## isn't commutative. So ##n^2-1## is an upper bound I guess? (I'm also pretty sure you can't have an ##n^2## dimensional linear algebraic group except for ##GL(n)##, but I'm open to the possibility of a strange counterexample)
 
fresh_42 said:
Summary:: linear algebra; center; groups

Let ##G\leq GL(n)## be a linear algebraic group of dimension ##m,## and ##C## its ##c##-dimensional center. What do we know about lower and upper bounds of ##c=c(m)\,\text{?}##

Clearly ##c(0)=0, c(1)=1## and ##n^2\geq c(m)\geq 1## for ##m\neq 0.## By Schur's Lemma we also know ##c(n^2)=1##. Did anybody ever investigated what happens in between?
I'm not sure I full understand your question, but for a concrete example the center of ##O(n)## is ##\{I_n,-I_n\}## and ##O(n)## has dimension ##\frac{n^2-n}{n}##.
 
fresh_42 said:
Summary:: linear algebra; center; groups

Let ##G\leq GL(n)## be a linear algebraic group of dimension ##m,## and ##C## its ##c##-dimensional center. What do we know about lower and upper bounds of ##c=c(m)\,\text{?}##

Clearly ##c(0)=0, c(1)=1## and ##n^2\geq c(m)\geq 1## for ##m\neq 0.## By Schur's Lemma we also know ##c(n^2)=1##. Did anybody ever investigated what happens in between?
BTW, what are the tools to even investigate such a question?
 
Sure, I know the standard (simple) groups here. But how does ##d:=d(n,m):=\dim C(G)## behave generically? Yes, ##0## is a lower bound, and ##n^2## maybe ##n^2-1## an upper bound, but neither are interesting cases. The question is: Can we say something more significant about ##d## given an arbitrary ##m-##dimensional subgroup of ##\operatorname{GL}(n)## then ##n^2>d\geq 0.## Diagonal matrices form an abelian group, so there are groups with ##d=m.## If we write ##d(n,m)=O(m^\eta),## what can we say about ##\eta##? Is it bounded with ##m## from above, or is ##\eta >1?##. What is the biggest abelian subgroup of ##\operatorname{GL}(n)?## ##\eta=1## is a good guess, but is there a proof? How big are typical centers, i.e. of a randomly chosen subgroup?
 
  • #10
Aren't the maximal abelian subgroups conjugate to the diagonal subgroup?
 
  • Like
Likes fresh_42

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 26 ·
Replies
26
Views
804
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
900
  • · Replies 17 ·
Replies
17
Views
6K
  • · Replies 1 ·
Replies
1
Views
481
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K