# Challenge 3a: What's in a polynomial?

• Office_Shredder
In summary, the conversation discusses a challenge to prove that the function f(x) = 2x is not a polynomial on the real numbers. Two solutions are presented, one involving l'Hospital's rule and the other involving derivatives. It is also mentioned that defining sets S_n in a certain way will result in all elements being the same for a polynomial of degree n, but this will fail for an exponential function. Finally, a simple solution is presented where g(x)g(-x) has degree 2n, leading to the conclusion that g(x) must be constant, contradicting the assumption that f(x) is a polynomial.

#### Office_Shredder

Staff Emeritus
Gold Member
In order to challenge a broader section of the forum, there is a part a and a part b to this challenge - if you feel that part b is an appropriate challenge, then I request you do not post a solution to part a as part a is a strictly easier question than part b.

The challenge: Prove that the function f(x) = 2x is not a polynomial on ℝ.

Suppose $$g(x)=a_n x^n+\ldots a_0$$, with $$a_n\neq 0$$.
Then $$\lim_{x->\infty}\frac{f(x)}{g(x)}=\infty*sign(a_n)$$ by applying l'Hospital rule n times, for any fixed n and $$a_n$$.

Hence f(x) cannot be a polynomial else this limit should be 1 by choosing the coeffecient.

Nice solution jk22! Anybody have other ways of solving it?

Let P be a polynomial of degree n.

Define $S_1=(a_{1,1},a_{1,2},...)$ where $a_{1,i}=P(i)$

Define $S_2=(a_{2,1},a_{2,2,...})$ where $a_{2,i}=a_{1,i+1}-a_{1,i}$

Define $S_3=(a_{3,1},a_{3,2},...)$ where $a_{3,i}=a_{2,i+1}-a_{2,i}$

and so on until $S_n$

I claim that for a polynomial of degree n, all elements of $S_n$ are the same.

This is true because if $P(x)= \sum_{k=0}^n b_kx^k$, then I can form a polynomial $P_2(x)= P(x+1)-P(x)= \sum_{k=0}^n b_k((x+1)^k-x^k)$, which is of degree n-1 and agrees with my elements of $S_2$ ($a_{2,i}=P_2(i)$). I can create a polynomial $P_3$ of degree $n-2$ which agrees with $S_3$ by the same process, etc. until I get to $P_n$ which has degree zero and must be a constant.

It is obvious that this will fail for an exponential.

Defining my sets $S_n$ the same way as above

$S_1=(2^i | i \in (1,2,3,...))$

$S_2=(2^{i+1}-2^i=2^i | i \in (1,2,3,...))$

$S_1=S_2=...$ Done.

I apologize for my lack of creativity.

Office_Shredder said:
In order to challenge a broader section of the forum, there is a part a and a part b to this challenge - if you feel that part b is an appropriate challenge, then I request you do not post a solution to part a as part a is a strictly easier question than part b.
As we have two solutions now, I guess I can add one?

Suppose f(x)=2x can be written as polynomial function g(x) of degree n.
Then g(x)g(-x)=2x 2-x = 1, but g(x)g(-x) has degree 2n. This gives n=0, so g(x) has to be constant -> contradiction.

Wow, I didn't realize there was such a simple solution. If I may add another $$\lim_{x \to -\infty} 2^x=0$$, which can not be the case for any polynomial since for $a_n \neq 0$ $$\lim_{x \to -\infty} \sum_{i=0}^n a_ix^i= \lim_{x \to -\infty}=x^n \sum_{i=0}^n \frac{a_i}{x^{n-i}}$$. This product has to diverge (to negative or positive infinity depending on the sign of $a_n$ ) since I can make the sum arbitrarily close to a_i by taking x to be very negative.

Nice solutions HS. mfb, that's fine I just didn't want people coming through and blowing through all the low hanging fruit here before the people it was designed for got a chance to answer. That answer of yours is ridulously elegant!

mfb said:
As we have two solutions now, I guess I can add one?

Suppose f(x)=2x can be written as polynomial function g(x) of degree n.
Then g(x)g(-x)=2x 2-x = 1, but g(x)g(-x) has degree 2n. This gives n=0, so g(x) has to be constant -> contradiction.
Very nice!

I guess I am a bit late, but whatever. I just saw this problem xD

The function $2^x$ has n-th derivative $\ln(2)^n*2^x$.
In particular, all of it's n-th derivatives are non zero for x = 0.

This is impossible for any polynomial, as the k+1 th derivative will be 0 everywhere whenever k is the degree of the polynomial (a finite number).

Last edited:
Boorglar, you aren't late as long as the forum's still open and you have a new solution. Nice and simple, I like it.

## 1. What is a polynomial?

A polynomial is an algebraic expression that consists of one or more terms, each of which is made up of a coefficient and a variable raised to a non-negative integer power.

## 2. How do you identify a polynomial?

A polynomial can be identified by looking for the presence of variables, coefficients, and non-negative integer exponents. It is important to note that the variable cannot be under a square root or in the denominator.

## 3. What is the degree of a polynomial?

The degree of a polynomial is the highest exponent of the variable in the expression. For example, in the polynomial 3x^2 + 5x + 1, the degree is 2.

## 4. What is the leading coefficient of a polynomial?

The leading coefficient of a polynomial is the coefficient of the term with the highest degree. In the polynomial 3x^2 + 5x + 1, the leading coefficient is 3.

## 5. How do you simplify a polynomial?

To simplify a polynomial, you must combine like terms by adding or subtracting coefficients. You can also use the distributive property to factor out a common factor. Additionally, you can use the FOIL method to multiply binomials.