mathwonk
Science Advisor
Homework Helper
2024 Award
- 11,952
- 2,225
SPOILER: solution of #10:By definition, V(Y^2-X^2) denotes the set of points in (X,Y) space whose coordinates satisfy the polynomial Y^2-X^2. Hence the real points consist of the points on the two lines X=Y and X+Y = 0, in the real plane. By definition Spec(R) is the set of prime ideals in the ring R, where an ideal J in R is prime if and only if the quotient ring R/J is a "domain", i.e. R/J has no non trivial divisors of zero. Equivalently, if and only if for elements a,b, in R, the product ab belongs to J if and only if at least one of a or b, or both, belongs to J.
If (a,b) is a solution of Y^2-X^2 = 0, the evaluation map C[X,Y]-->C, sending f(X,Y) to f(a,b), defines a surjective homomorphism C[X,Y]-->C with kernel the maximal ideal (X-a,Y-b). Y^2-X^2 belongs to this ideal as one sees by setting Y = (Y-b)+b and X=(X-a)+a and expanding Y^2-X^2. Hence (X-a,Y-b) defines an ideal J in R = C[X,Y]/(Y^2-X^2), such that R/J ≈ C, field. Thus J is a prime ideal in R. Moreover J determines the point (a,b) as the only common zero of all elements of J. Hence there is an injection from the infinite set of (real, hence also complex) points of V(Y^2-X^2) into Spec(R), that spectrum is infinite.
By definition, the Krull dimension of R is the length of the longest strict chain of prime ideals in R, ordered by containment, where the chain P0 < P1 <...< Pn has "length" = n. Since (X-Y) < (X-1,Y-1) is a chain of prime ideals in R of length 1, the Krull dimension is at least one. It already follows that R is not Artinian, since a ring is Artinian if and only if it is Noetherian, (which R is), and of Krull dimension zero, which R is not.
Now R actually has dimension one, since (X-Y) is a principal, hence minimal, prime in R, and when we mod out by it we get the principal ideal domain C[X,Y]/(X-Y) ≈ C[X]. In this ring an ideal is prime if and only if it is generated by an irreducible element, hence no non - zero prime ideal can be contained in another, since one of the irreducible generators would divide the other, contradicting the meaning of irreducible. Thus only one prime ideal, at most, can contain (X-Y). Similarly at most one can contain (X+Y). Thus any chain starting from either (X-Y) or (X+Y) has length at most one. But by definition of a prime ideal, any prime in R must contain zero, i.e. the product (X-Y)(X+Y), hence contains at last one of them.
If (a,b) is a solution of Y^2-X^2 = 0, the evaluation map C[X,Y]-->C, sending f(X,Y) to f(a,b), defines a surjective homomorphism C[X,Y]-->C with kernel the maximal ideal (X-a,Y-b). Y^2-X^2 belongs to this ideal as one sees by setting Y = (Y-b)+b and X=(X-a)+a and expanding Y^2-X^2. Hence (X-a,Y-b) defines an ideal J in R = C[X,Y]/(Y^2-X^2), such that R/J ≈ C, field. Thus J is a prime ideal in R. Moreover J determines the point (a,b) as the only common zero of all elements of J. Hence there is an injection from the infinite set of (real, hence also complex) points of V(Y^2-X^2) into Spec(R), that spectrum is infinite.
By definition, the Krull dimension of R is the length of the longest strict chain of prime ideals in R, ordered by containment, where the chain P0 < P1 <...< Pn has "length" = n. Since (X-Y) < (X-1,Y-1) is a chain of prime ideals in R of length 1, the Krull dimension is at least one. It already follows that R is not Artinian, since a ring is Artinian if and only if it is Noetherian, (which R is), and of Krull dimension zero, which R is not.
Now R actually has dimension one, since (X-Y) is a principal, hence minimal, prime in R, and when we mod out by it we get the principal ideal domain C[X,Y]/(X-Y) ≈ C[X]. In this ring an ideal is prime if and only if it is generated by an irreducible element, hence no non - zero prime ideal can be contained in another, since one of the irreducible generators would divide the other, contradicting the meaning of irreducible. Thus only one prime ideal, at most, can contain (X-Y). Similarly at most one can contain (X+Y). Thus any chain starting from either (X-Y) or (X+Y) has length at most one. But by definition of a prime ideal, any prime in R must contain zero, i.e. the product (X-Y)(X+Y), hence contains at last one of them.