$\displaystyle \sqrt{1001}+\sqrt{999}\,?\,2\sqrt{1000}$
$\displaystyle (\sqrt{1001}+\sqrt{999})^2\,?\,(2\sqrt{1000})^2$
$\displaystyle 1001+2\sqrt{1001\cdot999}+999\,?\,4000$
$\displaystyle \left(\sqrt{(1000+1)(1000-1)} \right)^2\,?\,1000^2$
$\displaystyle 1000^2-1\,?\,1000^2$
$\displaystyle -1\,?\,0$
$\displaystyle -1<0$
Thus, we may conclude:
$\displaystyle \sqrt{1001}+\sqrt{999}<2\sqrt{1000}$