Challenge #60: Comparing Square Roots without a Calculator - May 20th, 2013

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
The challenge involves comparing the values of √1001 + √999 and 2√1000 without a calculator. Participants provided various methods to approach the problem, with some using algebraic manipulation and approximations. MarkFL presented a solution that effectively demonstrated the comparison, while Sudharaka offered an alternate method. Several members successfully solved the challenge, showcasing their mathematical reasoning skills. The discussion highlights the importance of analytical thinking in solving mathematical problems without digital aids.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Without using a calculator determine which is larger: $$\sqrt{1001}+\sqrt{999}$$ or $$2\sqrt{1000}$$.
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) kaliprasad
2) MarkFL
3) jacobi
4) Sudharaka

Solution (from MarkFL):
$\displaystyle \sqrt{1001}+\sqrt{999}\,?\,2\sqrt{1000}$

$\displaystyle (\sqrt{1001}+\sqrt{999})^2\,?\,(2\sqrt{1000})^2$

$\displaystyle 1001+2\sqrt{1001\cdot999}+999\,?\,4000$

$\displaystyle \left(\sqrt{(1000+1)(1000-1)} \right)^2\,?\,1000^2$

$\displaystyle 1000^2-1\,?\,1000^2$

$\displaystyle -1\,?\,0$

$\displaystyle -1<0$

Thus, we may conclude:

$\displaystyle \sqrt{1001}+\sqrt{999}<2\sqrt{1000}$

Alternate solution (from Sudharaka):
\begin{eqnarray} (\sqrt{1001}+\sqrt{999})^2 &=& 2(1000+\sqrt{1001\times 999})\\

&=&2(1000+\sqrt{10^6-1})~~~~~~~~~~~~(1)

\end{eqnarray}

Since, \(\sqrt{10^6-1}<\sqrt{10^6}=10^3\) we have,

\[2(1000+\sqrt{10^6-1})<4000=(2\sqrt{1000})^2~~~~~~~~~~~~(2)\]

By (1) and (2) we get,

\[(\sqrt{1001}+\sqrt{999})^2<(2\sqrt{1000})^2\]

\[\therefore \sqrt{1001}+\sqrt{999}<2\sqrt{1000}\]
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
0
Views
900
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K