Challenge involving irrational number

Click For Summary
SUMMARY

The discussion focuses on demonstrating that for any irrational number \( x \), there exist integers \( m \) and \( n \) such that \( \frac{1}{2555} < mx + n < \frac{1}{2012} \). The key concept is that the set \( \mathbb{Z} + x \mathbb{Z} \) is dense in the real numbers, which guarantees the existence of such integers \( m \) and \( n \). This property of irrational numbers is central to solving the challenge presented.

PREREQUISITES
  • Understanding of irrational numbers and their properties
  • Familiarity with the concept of density in real numbers
  • Basic knowledge of integer arithmetic and inequalities
  • Experience with mathematical proofs and logic
NEXT STEPS
  • Study the density of subsets in real analysis
  • Explore the properties of irrational numbers in number theory
  • Learn about Diophantine approximation techniques
  • Investigate applications of density in mathematical proofs
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in number theory and the properties of irrational numbers.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x$ be an irrational number. Show that there are integers $m$ and $n$ such that $\dfrac{1}{2555}<mx+n<\dfrac{1}{2012}$.
 
Mathematics news on Phys.org
We have $\frac{1}{2012} - \frac{1}{2555} = \frac{ 543}{2012 * 2555}$
Now to keep it simple let p = 2012 * 2555
divide the interval $[0\cdots 1]$ into p equal intervals from 1 to p the $k^{th}$ interval between
$\frac{k-1}{p}$ to $\frac{k}{p}$
Define the function $f(m) = mx - \lfloor mx \rfloor $
Let us find f(k) for k = 1 to p
We shall get p values and there is value in 1st interval.
We shall assert the above statement that there is value in 1st interval.
If there is no value in 1st interval then there are p values and p-1 intervals so 2 values must be in the same interval so say for a and b
So $ | f(a) - f(b) |$ must be in the 1st interval for (a-b)
So there is a value say c such that
$ | f(c) |= \frac{1}{p}$
Now because p = 2012 * 2555
So there exists integer s and t such that
$\frac{1}{2555} < st < rt < \frac{1}{2012}$
So if chose an integer m such that $sc <= m < rc$ then we have
$\frac{1}{2555} < f(c) < \frac{1}{2012}$
Because $f(c) < \frac{1}{p}$
And as $r < p$ we have
$f(mc) < 1$
So $f(m) = mx - \lfloor mx \rfloor $ and choosing $n= - \lfloor mx \rfloor $ we get the result
Hence proved
 
$x$ is irrational then $\mathbb{Z} + x \mathbb{Z}$ is dense so :
$$\exists m,n \in \mathbb{Z}, \dfrac{1}{2555} < m x + n < \dfrac{1}{2012}$$
 
  • Like
Likes   Reactions: dextercioby
ALI ALI said:
$x$ is irrational then $\mathbb{Z} + x \mathbb{Z}$ is dense

If I had to guess, proving this is the main point of the challenge.
 
  • Like
Likes   Reactions: dextercioby, Office_Shredder and topsquark

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
16
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
4
Views
3K