MHB Challenge involving irrational number

Click For Summary
The discussion revolves around proving that for an irrational number \( x \), there exist integers \( m \) and \( n \) such that \( \frac{1}{2555} < mx + n < \frac{1}{2012} \). The key concept is that the set \( \mathbb{Z} + x \mathbb{Z} \) is dense in the real numbers. This density implies that for any interval, including \( \left( \frac{1}{2555}, \frac{1}{2012} \right) \), there are integers \( m \) and \( n \) satisfying the inequality. The challenge emphasizes the application of this density property to find suitable integers. Overall, the main focus is on demonstrating the existence of such integers using the properties of irrational numbers.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x$ be an irrational number. Show that there are integers $m$ and $n$ such that $\dfrac{1}{2555}<mx+n<\dfrac{1}{2012}$.
 
Mathematics news on Phys.org
We have $\frac{1}{2012} - \frac{1}{2555} = \frac{ 543}{2012 * 2555}$
Now to keep it simple let p = 2012 * 2555
divide the interval $[0\cdots 1]$ into p equal intervals from 1 to p the $k^{th}$ interval between
$\frac{k-1}{p}$ to $\frac{k}{p}$
Define the function $f(m) = mx - \lfloor mx \rfloor $
Let us find f(k) for k = 1 to p
We shall get p values and there is value in 1st interval.
We shall assert the above statement that there is value in 1st interval.
If there is no value in 1st interval then there are p values and p-1 intervals so 2 values must be in the same interval so say for a and b
So $ | f(a) - f(b) |$ must be in the 1st interval for (a-b)
So there is a value say c such that
$ | f(c) |= \frac{1}{p}$
Now because p = 2012 * 2555
So there exists integer s and t such that
$\frac{1}{2555} < st < rt < \frac{1}{2012}$
So if chose an integer m such that $sc <= m < rc$ then we have
$\frac{1}{2555} < f(c) < \frac{1}{2012}$
Because $f(c) < \frac{1}{p}$
And as $r < p$ we have
$f(mc) < 1$
So $f(m) = mx - \lfloor mx \rfloor $ and choosing $n= - \lfloor mx \rfloor $ we get the result
Hence proved
 
$x$ is irrational then $\mathbb{Z} + x \mathbb{Z}$ is dense so :
$$\exists m,n \in \mathbb{Z}, \dfrac{1}{2555} < m x + n < \dfrac{1}{2012}$$
 
  • Like
Likes dextercioby
ALI ALI said:
$x$ is irrational then $\mathbb{Z} + x \mathbb{Z}$ is dense

If I had to guess, proving this is the main point of the challenge.
 
  • Like
Likes dextercioby, Office_Shredder and topsquark
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
16
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
4
Views
3K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K