MHB Challenge: Is cos(pi/60) transcendental?

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Challenge
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Here's your challenge - is $\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{60} \right) } \end{align*}$ transcendental, or does it have an exact surd value? If it has an exact surd value, what is it?

Here is my solution for those of us playing at home.

It can be shown that $\displaystyle \begin{align*} \cos{ \left( \frac{2\,\pi}{5} \right) } = \frac{\sqrt{5} - 1}{4} \end{align*}$, $\displaystyle \begin{align*} \sin{ \left( \frac{2\,\pi}{5} \right) } = \frac{\sqrt{10 + 2\,\sqrt{5}}}{4} \end{align*}$, $\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{3} \right) } = \frac{1}{2} \end{align*}$ and $\displaystyle \begin{align*} \sin{ \left( \frac{\pi}{3} \right) } = \frac{\sqrt{3}}{2} \end{align*}$, so that means

$\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{15} \right) } &= \cos{ \left( \frac{2\,\pi}{5} - \frac{\pi}{3} \right) } \\ &= \cos{ \left( \frac{2\,\pi}{5} \right) } \cos{ \left( \frac{\pi}{3} \right) } + \sin{ \left( \frac{ 2\,\pi}{5} \right) } \sin{ \left( \frac{\pi}{3} \right) } \\ &= \frac{ \left( \sqrt{5} - 1 \right) }{4} \cdot \frac{1}{2} + \frac{\sqrt{10 + 2\,\sqrt{5}}}{4} \cdot \frac{\sqrt{3}}{2} \\ &= \frac{\sqrt{5} - 1 + \sqrt{30 + 6\,\sqrt{5}}}{8} \end{align*}$

Now we should note that for angles in the first quadrant

$\displaystyle \begin{align*} \cos{ \left( \frac{\theta}{2} \right) } \equiv \sqrt{ \frac{ \cos{ \left( \theta \right) } + 1 }{2} } \end{align*}$

so

$\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{30} \right) } &= \sqrt{ \frac{\frac{\sqrt{5} - 1 + \sqrt{30 + 6\,\sqrt{5}}}{8} + 1}{2} } \\ &= \sqrt{ \frac{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}}{16} } \\ &= \frac{\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}}}{4} \\ \\ \cos{ \left( \frac{\pi}{60} \right) } &= \sqrt{ \frac{\frac{\sqrt{ \sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}} }}{4} + 1}{2} } \\ &= \sqrt{ \frac{\frac{ \sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 4}{4}}{2} } \\ &= \sqrt{\frac{\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 4}{8}} \\ &= \sqrt{ \frac{2\,\sqrt{ \sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}} } + 8}{16} } \\ &= \frac{\sqrt{2\,\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 8}}{4} \end{align*}$

So there you go, it has an exact surd value, disgusting as it is. As for whether it can be simplified further, I am unsure :)
 
Last edited:
Mathematics news on Phys.org
Looks like an actual solution will be the root of a polynomial of order 16.
That is, algebraic, but probably not a 'nice' surd value.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top