MHB Challenge: Is cos(pi/60) transcendental?

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Challenge
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Here's your challenge - is $\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{60} \right) } \end{align*}$ transcendental, or does it have an exact surd value? If it has an exact surd value, what is it?

Here is my solution for those of us playing at home.

It can be shown that $\displaystyle \begin{align*} \cos{ \left( \frac{2\,\pi}{5} \right) } = \frac{\sqrt{5} - 1}{4} \end{align*}$, $\displaystyle \begin{align*} \sin{ \left( \frac{2\,\pi}{5} \right) } = \frac{\sqrt{10 + 2\,\sqrt{5}}}{4} \end{align*}$, $\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{3} \right) } = \frac{1}{2} \end{align*}$ and $\displaystyle \begin{align*} \sin{ \left( \frac{\pi}{3} \right) } = \frac{\sqrt{3}}{2} \end{align*}$, so that means

$\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{15} \right) } &= \cos{ \left( \frac{2\,\pi}{5} - \frac{\pi}{3} \right) } \\ &= \cos{ \left( \frac{2\,\pi}{5} \right) } \cos{ \left( \frac{\pi}{3} \right) } + \sin{ \left( \frac{ 2\,\pi}{5} \right) } \sin{ \left( \frac{\pi}{3} \right) } \\ &= \frac{ \left( \sqrt{5} - 1 \right) }{4} \cdot \frac{1}{2} + \frac{\sqrt{10 + 2\,\sqrt{5}}}{4} \cdot \frac{\sqrt{3}}{2} \\ &= \frac{\sqrt{5} - 1 + \sqrt{30 + 6\,\sqrt{5}}}{8} \end{align*}$

Now we should note that for angles in the first quadrant

$\displaystyle \begin{align*} \cos{ \left( \frac{\theta}{2} \right) } \equiv \sqrt{ \frac{ \cos{ \left( \theta \right) } + 1 }{2} } \end{align*}$

so

$\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{30} \right) } &= \sqrt{ \frac{\frac{\sqrt{5} - 1 + \sqrt{30 + 6\,\sqrt{5}}}{8} + 1}{2} } \\ &= \sqrt{ \frac{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}}{16} } \\ &= \frac{\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}}}{4} \\ \\ \cos{ \left( \frac{\pi}{60} \right) } &= \sqrt{ \frac{\frac{\sqrt{ \sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}} }}{4} + 1}{2} } \\ &= \sqrt{ \frac{\frac{ \sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 4}{4}}{2} } \\ &= \sqrt{\frac{\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 4}{8}} \\ &= \sqrt{ \frac{2\,\sqrt{ \sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}} } + 8}{16} } \\ &= \frac{\sqrt{2\,\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 8}}{4} \end{align*}$

So there you go, it has an exact surd value, disgusting as it is. As for whether it can be simplified further, I am unsure :)
 
Last edited:
Mathematics news on Phys.org
Looks like an actual solution will be the root of a polynomial of order 16.
That is, algebraic, but probably not a 'nice' surd value.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top