MHB Challenge: Is cos(pi/60) transcendental?

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Challenge
Click For Summary
The challenge posed is to determine whether cos(π/60) is a transcendental number or if it can be expressed as an exact surd. Participants are encouraged to explore the properties of cosine and its relation to algebraic numbers. The discussion includes attempts to derive an exact value for cos(π/60) and considerations of its mathematical classification. Key points involve examining the cosine function's behavior at specific angles and the implications for transcendentality. The conclusion remains open-ended, inviting further analysis and exploration of the topic.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Here's your challenge - is $\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{60} \right) } \end{align*}$ transcendental, or does it have an exact surd value? If it has an exact surd value, what is it?

Here is my solution for those of us playing at home.

It can be shown that $\displaystyle \begin{align*} \cos{ \left( \frac{2\,\pi}{5} \right) } = \frac{\sqrt{5} - 1}{4} \end{align*}$, $\displaystyle \begin{align*} \sin{ \left( \frac{2\,\pi}{5} \right) } = \frac{\sqrt{10 + 2\,\sqrt{5}}}{4} \end{align*}$, $\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{3} \right) } = \frac{1}{2} \end{align*}$ and $\displaystyle \begin{align*} \sin{ \left( \frac{\pi}{3} \right) } = \frac{\sqrt{3}}{2} \end{align*}$, so that means

$\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{15} \right) } &= \cos{ \left( \frac{2\,\pi}{5} - \frac{\pi}{3} \right) } \\ &= \cos{ \left( \frac{2\,\pi}{5} \right) } \cos{ \left( \frac{\pi}{3} \right) } + \sin{ \left( \frac{ 2\,\pi}{5} \right) } \sin{ \left( \frac{\pi}{3} \right) } \\ &= \frac{ \left( \sqrt{5} - 1 \right) }{4} \cdot \frac{1}{2} + \frac{\sqrt{10 + 2\,\sqrt{5}}}{4} \cdot \frac{\sqrt{3}}{2} \\ &= \frac{\sqrt{5} - 1 + \sqrt{30 + 6\,\sqrt{5}}}{8} \end{align*}$

Now we should note that for angles in the first quadrant

$\displaystyle \begin{align*} \cos{ \left( \frac{\theta}{2} \right) } \equiv \sqrt{ \frac{ \cos{ \left( \theta \right) } + 1 }{2} } \end{align*}$

so

$\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{30} \right) } &= \sqrt{ \frac{\frac{\sqrt{5} - 1 + \sqrt{30 + 6\,\sqrt{5}}}{8} + 1}{2} } \\ &= \sqrt{ \frac{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}}{16} } \\ &= \frac{\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}}}{4} \\ \\ \cos{ \left( \frac{\pi}{60} \right) } &= \sqrt{ \frac{\frac{\sqrt{ \sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}} }}{4} + 1}{2} } \\ &= \sqrt{ \frac{\frac{ \sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 4}{4}}{2} } \\ &= \sqrt{\frac{\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 4}{8}} \\ &= \sqrt{ \frac{2\,\sqrt{ \sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}} } + 8}{16} } \\ &= \frac{\sqrt{2\,\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 8}}{4} \end{align*}$

So there you go, it has an exact surd value, disgusting as it is. As for whether it can be simplified further, I am unsure :)
 
Last edited:
Mathematics news on Phys.org
Looks like an actual solution will be the root of a polynomial of order 16.
That is, algebraic, but probably not a 'nice' surd value.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads