- #1
Prove It
Gold Member
MHB
- 1,465
- 24
View attachment 7231
1. By applying the sine rule we have
$\displaystyle \begin{align*} \frac{\sin{ \left( A \right) }}{a} &= \frac{\sin{ \left( B \right) } }{b} \\ \frac{\sin{ \left( \alpha \right) }}{10} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \frac{\frac{2}{3}}{10} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \frac{1}{15} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \sin{ \left( \beta \right) } &= \frac{8}{15} \end{align*}$2. The length of the diagonal must be 10 units (it's a 3, 4, 5 right angled triangle magnified by a factor of 2 - check with Pythagoras if you'd like), so that means that the lengths from the centre to the vertices must each be 5 units in length.
Knowing this, the right hand isosceles triangle has lengths 5, 5, 6 and the angle between the two 5 lengths is $\displaystyle \begin{align*} \theta \end{align*}$, thus we can apply the cosine rule.
$\displaystyle \begin{align*} \cos{ \left( C \right) } &= \frac{a^2 + b^2 - c^2}{2\,a\,b} \\ \cos{ \left( \theta \right) } &= \frac{5^2 + 5^2 - 6^2}{2 \cdot 5 \cdot 5} \\ \cos{ \left( \theta \right) } &= \frac{25 + 25 - 36}{50} \\ \cos{ \left( \theta \right) } &= \frac{14}{50} \\ \cos{ \left( \theta \right) } &= \frac{7}{25} \\ \theta &= \cos^{-1}{\left( \frac{7}{25} \right) } \\ \theta &\approx 74^{\circ} \end{align*}$3. In $\displaystyle \begin{align*} \triangle ACD \end{align*}$ we can let $\displaystyle \begin{align*} \angle ACD = \theta \end{align*}$, then we can say that $\displaystyle \begin{align*} AD = \textrm{Opp} = 30 \end{align*}$ and $\displaystyle \begin{align*} CD = \textrm{Adj} = 40 \end{align*}$, so
$\displaystyle \begin{align*} \tan{ \left( \theta \right) } &= \frac{\textrm{Opp}}{\textrm{Adj}} \\ \tan{ \left( \theta \right) } &= \frac{30}{40} \\ \tan{ \left( \theta \right) } &= \frac{3}{4} \\ \theta &= \tan^{-1}{ \left( \frac{3}{4} \right) } \end{align*}$
1. By applying the sine rule we have
$\displaystyle \begin{align*} \frac{\sin{ \left( A \right) }}{a} &= \frac{\sin{ \left( B \right) } }{b} \\ \frac{\sin{ \left( \alpha \right) }}{10} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \frac{\frac{2}{3}}{10} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \frac{1}{15} &= \frac{\sin{ \left( \beta \right) }}{8} \\ \sin{ \left( \beta \right) } &= \frac{8}{15} \end{align*}$2. The length of the diagonal must be 10 units (it's a 3, 4, 5 right angled triangle magnified by a factor of 2 - check with Pythagoras if you'd like), so that means that the lengths from the centre to the vertices must each be 5 units in length.
Knowing this, the right hand isosceles triangle has lengths 5, 5, 6 and the angle between the two 5 lengths is $\displaystyle \begin{align*} \theta \end{align*}$, thus we can apply the cosine rule.
$\displaystyle \begin{align*} \cos{ \left( C \right) } &= \frac{a^2 + b^2 - c^2}{2\,a\,b} \\ \cos{ \left( \theta \right) } &= \frac{5^2 + 5^2 - 6^2}{2 \cdot 5 \cdot 5} \\ \cos{ \left( \theta \right) } &= \frac{25 + 25 - 36}{50} \\ \cos{ \left( \theta \right) } &= \frac{14}{50} \\ \cos{ \left( \theta \right) } &= \frac{7}{25} \\ \theta &= \cos^{-1}{\left( \frac{7}{25} \right) } \\ \theta &\approx 74^{\circ} \end{align*}$3. In $\displaystyle \begin{align*} \triangle ACD \end{align*}$ we can let $\displaystyle \begin{align*} \angle ACD = \theta \end{align*}$, then we can say that $\displaystyle \begin{align*} AD = \textrm{Opp} = 30 \end{align*}$ and $\displaystyle \begin{align*} CD = \textrm{Adj} = 40 \end{align*}$, so
$\displaystyle \begin{align*} \tan{ \left( \theta \right) } &= \frac{\textrm{Opp}}{\textrm{Adj}} \\ \tan{ \left( \theta \right) } &= \frac{30}{40} \\ \tan{ \left( \theta \right) } &= \frac{3}{4} \\ \theta &= \tan^{-1}{ \left( \frac{3}{4} \right) } \end{align*}$