MHB Challenge problem #1 Solve 2x^2y^2−2xy+x^2+y^2−2x−2y+3=0

  • Thread starter Thread starter Olinguito
  • Start date Start date
  • Tags Tags
    Challenge
AI Thread Summary
The equation 2x^2y^2−2xy+x^2+y^2−2x−2y+3=0 was presented as a challenge problem. It was determined that the equation can be rewritten as 2(xy-1)^2 + (x+y-1)^2. For this expression to equal zero, both xy must equal 1 and x+y must equal 1. However, the resulting quadratic equation λ^2 - λ + 1 = 0 has no real roots, indicating that there are no real solutions for x and y. The discussion concludes with anticipation for future challenge problems.
Olinguito
Messages
239
Reaction score
0
Hi all.

I would like to post some challenge problems from time to time. I’ll start with a simple one. :)

Find all real numbers $x,y$ satisfying the following equation:
$$2x^2y^2-2xy+x^2+y^2-2x-2y+3=0.$$
 
Mathematics news on Phys.org
Olinguito said:
Hi all.

I would like to post some challenge problems from time to time. I’ll start with a simple one. :)

Find all real numbers $x,y$ satisfying the following equation:
$$2x^2y^2-2xy+x^2+y^2-2x-2y+3=0.$$
Hi Olinguito, and welcome to MHB! We look forward seeing your problems.
[sp]$2x^2y^2-2xy+x^2+y^2-2x-2y+3 = 2(xy-1)^2 + (x+y-1)^2$. If that is zero then $xy=1$ and $x+y=1$. So $x$ and $y$ are the roots of $\lambda^2 - \lambda + 1 = 0$. But that equation has no real roots, so the given equation has no real solutions.[/sp]
 
Thanks Opalg – and great work! :D

I should have a second problem ready soon. :cool:
 
Olinguito said:
Hi all.

I would like to post some challenge problems from time to time. I’ll start with a simple one. :)

Find all real numbers $x,y$ satisfying the following equation:
$$2x^2y^2-2xy+x^2+y^2-2x-2y+3=0.$$

Welcome Olinguito!
$$2x^2y^2-2xy+x^2+y^2-2x-2y+3 = (xy)^2 + (xy-1)^2+(x-1)^2+(y-1)^2=0$$
A sum of squares is 0 if and only if all individual squares are 0.
So $x=1,y=1$,and $xy=0$, which is a contradiction.
Therefore there are no solutions.
 
Thanks, I like Serena! Great work as well. :D
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
7
Views
1K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
8
Views
1K
Replies
1
Views
1K
Back
Top