MHB Challenge Problem #8: 3Σ(1/(√(a^3+1))≥2Σ(√(a+b))

  • Thread starter Thread starter Olinguito
  • Start date Start date
  • Tags Tags
    Challenge
AI Thread Summary
The discussion revolves around proving the inequality involving positive real numbers a, b, and c, constrained by the condition a + b + c = 2. The main inequality to be proven is that 3 times the sum of the reciprocals of the square roots of (a^3 + 1) is greater than or equal to 2 times the sum of the square roots of the pairs (a+b), (b+c), and (c+a). A participant mentions correcting a typo in their solution, indicating ongoing refinement of the proof. The focus remains on demonstrating the validity of the mathematical statement through appropriate methods. The conversation highlights the importance of clarity and accuracy in mathematical proofs.
Olinguito
Messages
239
Reaction score
0
Let $a,b,c$ be positive real numbers such that $a+b+c=2$. Prove that
$$3\left(\frac1{\sqrt{a^3+1}}+\frac1{\sqrt{b^3+1}}+\frac1{\sqrt{c^3+1}}\right)\ \geqslant\ 2\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right).$$
 
Mathematics news on Phys.org
Solution:

We have
$$\frac3{a^3+1}\ =\ \frac{2-a}{a^2-a+1}+\frac1{a+1}\ \geqslant\ 2\sqrt{\dfrac{2-a}{a^3+1}}$$
putting into partial fractions and applying AM–GM (noting that all terms are positive).

Hence
$$\frac3{\sqrt{a^3+1}}\ \geqslant\ 2\sqrt{2-a}\ =\ 2\sqrt{b+c}.$$
Similarly
$$\frac3{\sqrt{b^3+1}}\ \geqslant\ 2\sqrt{c+a}$$
and
$$\frac3{\sqrt{c^3+1}}\ \geqslant\ 2\sqrt{a+b};$$
summing gives the required inequality.
 
Last edited:
Olinguito said:
Solution:

We have
$$\frac3{a^3+1}\ =\ \frac{2-a}{a^2-a+1}+\frac1{a+1}\ \leqslant\ 2\sqrt{\dfrac{2-a}{a^3+1}}$$
putting into partial fractions and applying AM–GM (noting that all terms are positive).

Hence
$$\frac3{\sqrt{a^3+1}}\ \leqslant\ 2\sqrt{2-a}\ =\ 2\sqrt{b+c}.$$
Similarly
$$\frac3{\sqrt{b^3+1}}\ \leqslant\ 2\sqrt{c+a}$$
and
$$\frac3{\sqrt{c^3+1}}\ \leqslant\ 2\sqrt{a+b};$$
summing gives the required inequality.


the question says it is $>=$ but answer says it is $<=$
 
I’ve fixed the typo in my solution.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top