MHB Challenging Classical Mechanics Problems: Can You Solve Them?

johnherald
Messages
2
Reaction score
0
Hello i have the difficulty in solving this two problems..thank you for your help math help boards :-) View attachment 8748
 

Attachments

  • 5 & 6.png
    5 & 6.png
    15.5 KB · Views: 142
Mathematics news on Phys.org
1.6

distance up the incline (with kinetic friction present) ...

$\Delta x = \dfrac{v_f^2 - v_0^2}{2a}$

time up the incline ...

$t = \dfrac{v_f-v_0}{a}$

... where $v_f=0$ and $a = -g(\sin{\theta} + \mu \cos{\theta})$time down the incline ...

$\Delta x = v_0 \cdot t + \dfrac{1}{2}at^2 \implies t = \sqrt{\dfrac{2\Delta x}{a}}$

note $v_0 = 0$, $\Delta x$ is the opposite of that found going up the incline and $a = -g(\sin{\theta} - \mu \cos{\theta})$
 
1.5 is related to d'Alembert's principle. We can analyze the dynamics of an accelerating frame of reference (i.e non-inertial) by adding a fictitious force. Since the force in system A is $m*100$, then a fictitious force of $m*10$ must be added to system B so that the dynamics in both systems are equivalent.
 
thanks a lot that will help me solving the other problems similar to that two particular question...:-)
and i have the difficulty solving some problems specially to the questions without a value.. thank you again for your help..
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top