MHB Chamilka's Question from Math Help Forum.

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Forum
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Original Title: Please Need an help on this integral!

chamilka said:
Hi everyone!

I have to integrate the following function.

\[\int_{0}^{1}x^{a+b-1}(1-x)^{c-a}(1-x^b)^{d-1}\,dx\]

Here a,b,c and d are constants. I have to integrate the above function with respect to x in the region from zero to infinity. This may seem like a Beta integral function, but there is a slight change that there are three terms x, (1-x) and (1-x^b).

Also I have found in a journal article that the answer for the integral is given as below

\[\sum_{i=0}^{\infty}(-1)^{i}\binom{d-1}{i}B(a+b+bi,\,c-a+1)\]

But the evaluation methods are not given. They might used a series expansion, but nothing is given there.

Please help me on this problem.

Thank you .

Hi chamilka, :)

\[\int_{0}^{1}x^{a+b-1}(1-x)^{c-a}(1-x^b)^{d-1}\,dx\]

Using the Binomial series of \((1-x^b)^{d-1}\) we get,

\begin{eqnarray}

\int_{0}^{1}x^{a+b-1}(1-x)^{c-a}(1-x^b)^{d-1}\,dx&=&\int_{0}^{1}x^{a+b-1}(1-x)^{c-a}\sum_{i=0}^{\infty} \; {d-1\choose i}\;(-x^b)^{i}\,dx\\

&=&\int_{0}^{1}\left(\sum_{i=0}^{\infty}(-1)^{i}{d-1\choose i}x^{a+b+bi-1}(1-x)^{c-a}\right)\,dx

\end{eqnarray}

The series, \(\displaystyle\sum_{i=0}^{\infty}(-1)^{i}{d-1\choose i}x^{a+b+bi-1}(1-x)^{c-a}\) is a power series and hence could be integrated term by term. Therefore,

\begin{eqnarray}

\int_{0}^{1}x^{a+b-1}(1-x)^{c-a}(1-x^b)^{d-1}\,dx&=&\sum_{i=0}^{\infty}\left(\int_{0}^{1}(-1)^{i}{d-1\choose i}x^{a+b+bi-1}(1-x)^{c-a}\,dx\right)\\

&=&\sum_{i=0}^{\infty}(-1)^{i}{d-1\choose i}\left(\int_{0}^{1}x^{(a+b+bi)-1}(1-x)^{(c-a+1)-1}\,dx\right)\\

\end{eqnarray}

By the definition of the Beta function, if \(Re(a+b+bi)>0\mbox{ and }Re(c-a+1)>0\) we get,

\[\int_{0}^{1}x^{a+b-1}(1-x)^{c-a}(1-x^b)^{d-1}\,dx=\sum_{i=0}^{\infty}(-1)^{i}{d-1\choose i}B(a+b+bi,\,c-a+1)\]

Kind Regards,
Sudharaka.
 
Mathematics news on Phys.org
Thank you Sudharaka. Here I got a more clear proof for my question. This is very great!

Btw I have posted a new post here It's regarding Beta functions. If you can please help me there too.. Thanks again.

Also quoted here:
chamilka said:
Hi everyone!
I got two versions of one particular function and now I need to show those two versions are equivalent.
For that I need to show the follwing, View attachment 223

Is it possible to show this by using the properties of Beta functions, Gaussian hypergeometric function etc?

Thanks in advance!
 
Question answered it seems and there is a new thread for the other question so I'll close this thread now.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top