Undergrad Checking if a stationary point is a minimum using Lagrangian Mechanics

Click For Summary
To determine if a stationary point is a minimum in Lagrangian mechanics, one can use the second variation, which is analogous to the second derivative test in standard calculus. The discussion highlights a practice question where the stationary point of an integral needs to be verified as a minimum, with the initial approach involving a second derivative test on the function f(x'). The poster questions whether the condition S(a) > S_actual can be applied to I(a) in the context of Lagrangian mechanics. They express confusion about the appropriate methods for analyzing minima in this framework, indicating a need for clarification on the topic. Understanding the second variation is crucial for correctly identifying minima in Lagrangian problems.
beans123
Messages
5
Reaction score
0
I'm having trouble understanding how to find out whether or not a stationary point is a minimum and I'm hoping for some clarification. In my class, we were shown that, using Euler's equation, the straight-line path:
Screenshot 2023-02-05 18.16.34.png

with constants a and b results in a stationary point of the integral:
Screenshot 2023-02-05 18.16.47.png

A certain practice question then asks to show that the stationary point corresponds to a minimum. My only attempt so far was performing a simple second derivative test on the function f(x') which turned out to be successful. However, I'm wondering if this is the only way to solve such a problem. I know that a minimum is satisfied if S(a) > S_actual, but can that same idea be mapped onto I(a), that is, is a minimum achieved if I(a) > I_actual (if that even makes sense)? I'm very new to Lagrangian mechanics and find it kind of overwhelming so forgive me if this is a silly question. It just seems that I took the calculus way of solving this when that may not be the ideal method for a class based on Lagrangian mechanics/. I appreciate any help/advice!
 
Physics news on Phys.org
Try googling "2nd variation in Lagrangian mechanics". (This is analog of 2nd derivatives in ordinary calculus.)
 
For simple comparison, I think the same thought process can be followed as a block slides down a hill, - for block down hill, simple starting PE of mgh to final max KE 0.5mv^2 - comparing PE1 to max KE2 would result in finding the work friction did through the process. efficiency is just 100*KE2/PE1. If a mousetrap car travels along a flat surface, a starting PE of 0.5 k th^2 can be measured and maximum velocity of the car can also be measured. If energy efficiency is defined by...

Similar threads

  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K