MHB Chen's question at Yahoo Answers (continuity of the norm).

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Norm
AI Thread Summary
The discussion centers on proving the continuity of a norm function N on R^n. It establishes that for any points x and y in R^n, the inequality |N(x) - N(y)| ≤ N(x - y) holds, which is a key property of norms. By fixing a point x0 and choosing δ equal to ε, the proof demonstrates that if the distance d(x, x0) is less than δ, then the difference |N(x) - N(x0)| can be made less than ε. This confirms that the norm function N is continuous. The argument effectively utilizes the properties of norms and the definition of continuity in a mathematical context.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Mathematics news on Phys.org
Hello Chen,

First, let's prove that $\left|N(x)-N(y)\right|\leq N(x-y)$ for all $x,y\in\mathbb{R}^n$. We have:

$N(y)=N(x+(y-x))\leq N(x)+N(x-y)\Rightarrow -N(x-y)\leq N(x)-N(y)\qquad (1)$

On the other hand:

$N(x)=N(y+(x-y))\leq N(y)+N(x-y)\Rightarrow N(x)-N(y)\leq N(x-y)\qquad (2)$

From $(1)$ and $(2)$ we clearly deduce that $\left|N(x)-N(y)\right|\leq N(x-y)$.

We'll consider on $\mathbb{R}^n$ the usual distance given by the norm $N$, that is $d(x,y)=N(x-y)$ and the usual distance on $\mathbb{R}$.

Now, fix $x_0\in \mathbb{R}^n$ an let $\epsilon>0$, choosing $\delta=\epsilon$:

$d(x,x_0)<\delta\Rightarrow N(x-x_0)<\delta=\epsilon\Rightarrow \left|N(x)-N(x_0)\right|<\epsilon$

which implies that $N$ is a continuous function with the specified distances.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top