Chernoff Bounds using importance sampling identity

  • Context: Graduate 
  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
Click For Summary
SUMMARY

This discussion focuses on deriving Chernoff bounds using the importance sampling identity for a binomial random variable, specifically defined as ##X \sim \text{Bin}(n,p)##. The key result shows that for any ##\delta > 0##, the probability ##P(X \geq (1+\delta)np)## can be bounded using the moment generating functions ##\phi_i(t)## and ##\psi_i(t)##. The final expression for the Chernoff bound is given as ##P(X \geq (1+\delta)np) \leq e^{-t(1+\delta)np}\left(\frac{1+q(e^t-1)}{1+p(e^t-1)}\right)^n##, which allows for tight bounds on tail probabilities by selecting an appropriate value of t.

PREREQUISITES
  • Understanding of moment generating functions (MGFs)
  • Familiarity with binomial random variables and their properties
  • Knowledge of importance sampling techniques
  • Basic concepts of Markov's inequality
NEXT STEPS
  • Study the application of moment generating functions in probability theory
  • Learn about advanced techniques in importance sampling
  • Explore the derivation of Chernoff bounds for other distributions
  • Investigate the use of Markov's inequality in bounding probabilities
USEFUL FOR

Statisticians, data scientists, and researchers in probability theory who are interested in bounding tail probabilities and applying Chernoff bounds in their analyses.

WMDhamnekar
MHB
Messages
378
Reaction score
30
How to use importance sampling identity to obtain the Chernoff bounds as given below?

Let X have moment generating function ##\phi(t)= E[e^{tX}]##. Then, for any c > 0 ,

##P[X\geq c ]\leq e^{-tc} \phi(t), \text{if t > 0}##

##P[X \leq c]\leq e^{-tc}\phi(t), \text{if t<0} ##

Solution:
Here's an example of using the importance sampling identity to obtain Chernoff bounds for a binomial random variable.

Suppose we have a binomial random variable ##X \sim \text{Bin}(n,p)##, where n is the number of trials and p is the probability of success on each trial. We want to bound the probability that X deviates from its mean by more than a certain amount, i.e., we want to bound ##P(X \geq (1+\delta)np)## for some ##\delta > 0##.

Let ##X = \sum_{i=1}^n X_i##, where the ##X_i## are independent Bernoulli random variables with parameter p. Let ##Q_i## be a Bernoulli distribution with parameter q, and let ##Q = Q_1 \times \cdots \times Q_n##.

Then, by the importance sampling identity, we have ##P(X \geq (1+\delta)np) = E_Q\left[\prod_{i=1}^n \frac{dP_i}{dQ_i}I_{X \geq (1+\delta)np}\right]##

Now, let ##\phi_i(t) = E[e^{tX_i}] = 1 + p(e^t - 1)## and ##\psi_i(t) = E_Q[e^{tX_i}] = 1 + q(e^t - 1)##.

By choosing ##Q_i## such that ##\frac{dP_i}{dQ_i} = e^{tX_i - \log \phi_i(t)}##, we obtain ##P(X \geq (1+\delta)np) = E_Q\left[e^{tX - n\log \phi(t)}I_{X \geq (1+\delta)np}\right]##

Applying Markov's inequality, we get ##P(X \geq (1+\delta)np) \leq e^{-t(1+\delta)np}E_Q\left[e^{tX - n\log \phi(t)}\right] = e^{-t(1+\delta)np}\prod_{i=1}^n\psi_i(t)e^{-\log \phi_i(t)} = e^{-t(1+\delta)np}\left(\frac{1+q(e^t-1)}{1+p(e^t-1)}\right)^n##

This is the Chernoff bound for a binomial random variable. By choosing an appropriate value of t, we can obtain a tight bound on the tail probability.

In my opinion, this solution seems to look correct. Do you have any doubts? Let me know, so that I shall clear them.
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K