I Chiral symmetries in E[SUP]^n[/SUP]

AI Thread Summary
Chirality plays a crucial role in biochemistry, particularly in the binding of small chiral molecules to larger ones like enzymes. In 2-D geometry, mirror-asymmetric figures, such as triangles with different side lengths, can exist without being superimposed through rigid transformations, akin to 3D chiral figures. The discussion extends to 1-D cases, where reflecting a directed line segment about a point results in a segment pointing in the opposite direction, illustrating analogs across dimensions. The conversation raises questions about extending these concepts to higher dimensions and other geometries, focusing on mappings that preserve the Euclidean inner product and their implications for orientation. Overall, the exploration of chiral symmetries in various dimensions reveals complex relationships between geometry and molecular behavior.
Mark Harder
Messages
246
Reaction score
60
As a biochemist, I deal with chirality of molecules all the time. If you have a tetrahedral molecule, for example a carbon atom, and all 4 vertices are labeled differently, as in different atoms on each one, then that molecule has a mirror-symmetric one that cannot be superimposed on the original. This makes a big difference when it comes to binding of small chiral molecules to big ones, esp. enzymes. What about 2-D geometry? Are there figures, triangles for example, that are mirror-asymetric? The answer is yes, provided they are confined to the plane they are in. Flipping over is not an allowed move, since the triangles are confined to E^2.
Try it. Draw a triangle with each side of a different length. Draw a straight line parallel to one of the edges (not necessary, but it makes visualizing easier) and outside the triangle. Now 'reflect' the triangle about this 1-D 'mirror', i.e. draw a triangle with vertices at the same distances from the mirror as the original. Now try to mentally rigidly rotate and translate the triangles so that they superimpose. You can't do it (without breaking the law and rotating in the 3rd dimension.) This is a 2D analog of 3D chiral figures and 2D mirrors. Not that the angles (disregarding their directions) and included sides are the same, satisfying Euclid's definition of congruency.
Now try the 1D case. Draw a directed line segment on the number line. Locate a point (a 0-D figure) on the line outside the directed segment and 'reflect' the directed segment about the point. The result will be a directed line segment pointed in the opposite direction from the original - a 1-D, 0-D analog of higher dimensions. Obviously, there is no example for 0-D figures.
So, my question is, can these examples be extended to higher dimensions? To n-D Euclidean spaces in general? What about other geometries?
 
Mathematics news on Phys.org
The mappings from \mathbb{R}^n to itself which preserve the euclidean inner product are x \mapsto Ax + b where A^{-1} = A^T, so |\det A| = \pm 1. Those with \det A = -1 are reflections, which require "flipping" in an additional dimension.

In more general geometries, you can have distance- and angle-preserving mappings, which will either preserve orientation or reverse it.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top