lys04
- 144
- 5
In the BB84 protocol, we have two basis, the Z basis which consists of |0> and |1> which represents bit values of 0 and 1 respectively in the Z basis. From this we construct another basis, the X basis which consists of ##|+> = \frac{1}{\sqrt(2)} |0> + \frac{1}{\sqrt(2)} |1>## and ##|-> = \frac{1}{\sqrt(2)} |0> - \frac{1}{\sqrt(2)} |1>## which also represents bit values of 0 and 1 in the X basis.
The purpose of having two basis is to prevent the eavesdropper as the act of measurement in the wrong basis has a chance of changing the state and thus introduce errors which can be detected.
Technically taking any linear combination of the Z basis to form a new basis has this effect but choosing ##\frac{1}{\sqrt(2)}## means the probabilities are symmetric. If the probabilities weren’t symmetric, then this means the probabilities of detecting the Eve for one bit is higher than the other bit, so it’s kind of like a trade off between probabilities?
The purpose of having two basis is to prevent the eavesdropper as the act of measurement in the wrong basis has a chance of changing the state and thus introduce errors which can be detected.
Technically taking any linear combination of the Z basis to form a new basis has this effect but choosing ##\frac{1}{\sqrt(2)}## means the probabilities are symmetric. If the probabilities weren’t symmetric, then this means the probabilities of detecting the Eve for one bit is higher than the other bit, so it’s kind of like a trade off between probabilities?