A Clarification of Mihăilescu's Theorem (Catalan's Conjecture)

AI Thread Summary
Mihăilescu's theorem confirms that Catalan's conjecture holds true, with the only natural number solution to the equation x^a - y^b = 1 being x=3, a=2, y=2, and b=3. The discussion raises questions about whether Mihăilescu's theorem implies that no other pairs of powers can equal 1 under different conditions. It seeks clarification on whether specific restrictions apply to the integers involved, such as requiring x or y to be prime or if only the conditions x, y > 0 and a, b > 1 are necessary. The conversation references Wikipedia for a more detailed explanation of these restrictions. Understanding these nuances is crucial for comprehending the broader implications of Mihăilescu's theorem.
e2m2a
Messages
354
Reaction score
13
TL;DR Summary
I understand Catalan's conjecture was proven by Preda V. Mihăilescu in 2002. However, I am not sure if it is proved for only certain conditions.
Mihăilescu's theorem proves that Catalan's conjecture is true. That is for x^a - y^b = 1, the only possible solution in naturual numbers for this equation is x=3, a=2, y=2, b=3. What is not clear to me is this. Does Mihăilescu's theorem prove that the difference between any other two powers (not the Catalan expression) will never be equal to 1 but only within certain restrictions? Another words, are there conditions that restrict x or y have to be both prime integers or just one of them must be a prime integer or does a or b have to be both prime integers or just one of them must be a prime integer for Mihăilescu's theorem to be true? Or is the only condition necessary is that x,y >0 and a.b >1?
 
Mathematics news on Phys.org
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top