LagrangeEuler
- 711
- 22
In CG coefficients methodology there is convention
\langle J_1 J_2 J_1 J-J_1|J_1 J_2 J J \rangle \geq 0
So if we have ##J_1=1##, ##J_2=1/2##
\langle 1 \quad 1/2 \quad 1/2 \quad 1|1 \quad 1/2 \quad 3/2 \quad 3/2\rangle \geq 0
using this convention. However, because ##J=3/2## is maximal value of angular moment, this is only CG coefficient and we could write
\langle 1 \quad 1/2 \quad1/2 \quad 1|1 \quad 1/2 \quad 3/2 \quad 3/2\rangle =1
Now if we work with ##J_-## operator we will obtain that
\langle 1 \quad 1/2 \quad -1/2 \quad -1|1 \quad 1/2 \quad -3/2 \quad -3/2\rangle =1
Do we have some similar convention for this lowest value of angular momentum?
\langle J_1 J_2 J_1 J-J_1|J_1 J_2 J J \rangle \geq 0
So if we have ##J_1=1##, ##J_2=1/2##
\langle 1 \quad 1/2 \quad 1/2 \quad 1|1 \quad 1/2 \quad 3/2 \quad 3/2\rangle \geq 0
using this convention. However, because ##J=3/2## is maximal value of angular moment, this is only CG coefficient and we could write
\langle 1 \quad 1/2 \quad1/2 \quad 1|1 \quad 1/2 \quad 3/2 \quad 3/2\rangle =1
Now if we work with ##J_-## operator we will obtain that
\langle 1 \quad 1/2 \quad -1/2 \quad -1|1 \quad 1/2 \quad -3/2 \quad -3/2\rangle =1
Do we have some similar convention for this lowest value of angular momentum?