MHB Closed sets intersection of countable open sets

Click For Summary
Every closed set in $\mathbb{R}$ can be expressed as the intersection of a countable collection of open sets. The discussion centers on defining a sequence of open sets, specifically using the union of open balls around points in the closed set. It is clarified that each open set in the sequence contains the closed set, ensuring that their intersection retains the closed property. The reasoning involves demonstrating that if a point belongs to all open sets, it converges to a limit within the closed set. This property holds true for all metric spaces, reinforcing the generality of the result.
Dustinsfl
Messages
2,217
Reaction score
5
Prove that every closed set in $\mathbb{R}$ is the intersection of a countable collection of open sets.

Let $G_n$ be a countable collection of open sets.
Then we would have 2 cases either $x\in\bigcap G_n$ which is a point which is closed.
Or we could $(a,b)$ in all $G_n$ but how to show that would be closed?
 
Physics news on Phys.org
I don't understand your reasoning: you start by "let $\{G_n\}$ a countable collection of open sets: that's not what is asked. We want to show that each closed subset $F$ of the real line can be written as a countable intersection of open sets. To see that, define $G_n:=\bigcup_{x\in F}B(x,n^{-1})$.

Note that this property is true for all metric spaces.
 
girdav said:
I don't understand your reasoning: you start by "let $\{G_n\}$ a countable collection of open sets: that's not what is asked. We want to show that each closed subset $F$ of the real line can be written as a countable intersection of open sets. To see that, define $G_n:=\bigcup_{x\in F}B(x,n^{-1})$.

Note that this property is true for all metric spaces.

I don't see how that union works.
 
An open ball is open, and an arbitrary union of open sets is open hence so is $G_n$. Each $G_n$ contains $F$, and so does their intersection. If $x\in G_n$ for each $n$, then $d(x,x_n)\leq n^{-1}$ for some $x_n\in F$. We deduce that $\{x_n\}$ converges to $x$ and since this sequences lies in a closed set the limit still is in this closed set.
 
girdav said:
An open ball is open, and an arbitrary union of open sets is open hence so is $G_n$. Each $G_n$ contains $F$, and so does their intersection. If $x\in G_n$ for each $n$, then $d(x,x_n)\leq n^{-1}$ for some $x_n\in F$. We deduce that $\{x_n\}$ converges to $x$ and since this sequences lies in a closed set the limit still is in this closed set.

Why does each $G_n$ contain $F$? How is that guaranteed?
 
dwsmith said:
Why does each $G_n$ contain $F$? How is that guaranteed?

Because $x\in B(x,n^{-1})$.
 
girdav said:
Because $x\in B(x,n^{-1})$.

Why is $F$ in there? Is $F=\{x\}$?
 
No, just an element of $F$. We have $\{x\}\subset B(x,n^{-1})$, then take the union over $x\in F$.
 
girdav said:
No, just an element of $F$. We have $\{x\}\subset B(x,n^{-1})$, then take the union over $x\in F$.

I still don't understand how we can ensure $F$ is a closed set just by taking unions of open sets.
 
  • #10
Is it true that all closed sets have a subcover? Is that the jist of the question?
 
  • #11
Actually, it seems that you believe that you have to show that a countable intersection of open sets is closed: it's not what you have to show (fortunately, as it's not true, taking $G_n=O$ where $O$ is open and not closed).

What you have to show is that each closed subset of $\Bbb R$ can be written as a countable intersection of open sets.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
5K