Collin's question via email about solving a DE using Laplace Transforms

Click For Summary
SUMMARY

The discussion focuses on solving the differential equation \( y'' + 4y = \mathrm{H}(t - 7) \) with initial conditions \( y(0) = 0 \) and \( y'(0) = -10 \) using Laplace Transforms. The Laplace Transform is applied to both sides, leading to the expression \( Y(s) = \frac{\mathrm{e}^{-7s}}{s(s^2 + 4)} - \frac{10}{s^2 + 4} \). The solution involves taking the Inverse Laplace Transform, utilizing Partial Fractions, and applying the Heaviside function, resulting in the final solution \( y = \mathrm{H}(t - 7) - \frac{1}{8}\sin(2(t - 7))\mathrm{H}(t - 7) - 5\sin(2t) \).

PREREQUISITES
  • Understanding of Differential Equations
  • Familiarity with Laplace Transforms
  • Knowledge of Inverse Laplace Transforms
  • Experience with Partial Fraction Decomposition
NEXT STEPS
  • Study the properties of the Laplace Transform in detail
  • Learn about the Heaviside step function and its applications
  • Explore Partial Fraction Decomposition techniques for complex functions
  • Practice solving various types of Differential Equations using Laplace Transforms
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are looking to deepen their understanding of solving differential equations using Laplace Transforms.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve the following Differential Equation:

$\displaystyle \begin{align*} y'' + 4\,y = \mathrm{H}\,\left( t - 7 \right) \textrm{ with } y\left( 0 \right) = 0 \textrm{ and } y'\left( 0 \right) = -10 \end{align*}$

Taking the Laplace Transform of both sides we have

$\displaystyle \begin{align*} \mathcal{L}\,\left\{ y'' + 4\,y \right\} &= \mathcal{L}\,\left\{ \mathrm{H}\,\left( t - 7 \right) \right\} \\ s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) + 4\,Y\left( s \right) &= \frac{\mathrm{e}^{-7\,s}}{s} \\ s^2\,Y\left( s \right) + 10 + 4\,Y\left( s \right) &= \frac{ \mathrm{e}^{-7\,s}}{s} \\ \left( s^2 + 4 \right) \, Y\left( s \right) &= \frac{\mathrm{e}^{-7\,s}}{s} - 10 \\ Y\left( s \right) &= \frac{\mathrm{e}^{-7\,s}}{s\,\left( s^2 + 4 \right) } - \frac{10}{s^2 + 4} \end{align*}$

So to solve the DE, all that we require now is to take the Inverse Laplace Transform of this result. To do this with the first term, we will need to use Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B\,s + C}{s^2 + 4} &\equiv \frac{1}{s\,\left( s^2 + 4 \right) } \\ A\,\left( s^2 + 4 \right) + \left( B\,s + C \right) \, s &= 1 \end{align*}$

Let $\displaystyle \begin{align*} s = 0 \end{align*}$ to find $\displaystyle \begin{align*} 4\,A = 1 \implies A = \frac{1}{4} \end{align*}$.

The coefficient of $\displaystyle \begin{align*} s^2 \end{align*}$ is $\displaystyle \begin{align*} A + B \end{align*}$ on the left and $\displaystyle \begin{align*} 0 \end{align*}$ on the right, and as $\displaystyle \begin{align*} A = \frac{1}{4} \end{align*}$ we have $\displaystyle \begin{align*} \frac{1}{4} + B = 0 \implies B = -\frac{1}{4} \end{align*}$.

The coefficient of $\displaystyle \begin{align*} s \end{align*}$ is $\displaystyle \begin{align*} C \end{align*}$ on the left and $\displaystyle \begin{align*} 0 \end{align*}$ on the right, thus $\displaystyle \begin{align*} C = 0 \end{align*}$.

Therefore $\displaystyle \begin{align*} \frac{1}{s\,\left( s^2 + 4 \right) } = \frac{1}{4\,s} - \frac{s}{4\,\left( s^2 + 4 \right) } \end{align*}$. So that means

$\displaystyle \begin{align*} y &= \mathcal{L}^{-1}\,\left\{ \frac{\mathrm{e}^{-7\,s}}{s\,\left( s^2 + 4 \right) } - \frac{10}{s^2 + 4} \right\} \\ &= \frac{1}{4} \mathcal{L}^{-1}\,\left\{ \frac{\mathrm{e}^{-7\,s}}{s} \right\} - \frac{1}{8} \,\mathcal{L}^{-1}\,\left\{ \mathrm{e}^{-7\,s} \,\left( \frac{2}{ s^2 + 2^2 } \right) \right\} - 5\,\mathcal{L}^{-1}\,\left\{ \frac{2}{s^2 + 2^2} \right\} \end{align*}$

The first and third terms are very straightforward. For the second term, we need to make use of the rule $\displaystyle \begin{align*} \mathcal{L}\,\left\{ f\left( t - c \right) \, \mathrm{H}\,\left( t - c \right) \right\} = \mathrm{e}^{-c\,s}\,F\left( s \right) \end{align*}$. We can read off that $\displaystyle \begin{align*} F\left( s \right) = \frac{2}{ s^2 + 2^2} \end{align*}$ and thus $\displaystyle \begin{align*} f\left( t \right) = \sin{ \left( 2\,t \right) } \end{align*}$. From here we can get that $\displaystyle \begin{align*} f\left( t - 7 \right) = \sin{ \left[ 2\,\left( t - 7 \right) \right] } \end{align*}$, and finally the solution to the DE is

$\displaystyle \begin{align*} y = \mathrm{H}\,\left( t - 7 \right) - \frac{1}{8}\sin{ \left[ 2\,\left( t - 7 \right) \right] }\,\mathrm{H}\,\left( t - 7 \right) - 5 \sin{ \left( 2\,t \right) } \end{align*}$.
 
Physics news on Phys.org
Careful students will check the solution to ensure that it actually is a solution to the DE.
 
By using the inversion formula and residue calculus I get \begin{split}<br /> y(t) &amp;= 10 \left( \frac{e^{2it}}{4i} + \frac{e^{-2it}}{-4i}\right) + \left( \frac14 + \frac{e^{2i(t-7)}}{(2i)(4i)}<br /> + \frac{e^{-2i(t-7)}}{(-2i)(-4i)} \right)H(t-7) \\<br /> &amp;= 5\sin(2t) + \left(\tfrac14 - \tfrac14\cos(2(t-7))\right)H(t-7).\end{split} I feel this involved less work, with less scope for error, than manipulating \dfrac{10}{s^2 + 4} + \dfrac{e^{-7s}}{s(s^2+4)} into a form where its inverse transform can be read from tables.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
7K