MHB Combinations / Sets of objects

  • Thread starter Thread starter arno100
  • Start date Start date
  • Tags Tags
    Combinations Sets
arno100
Messages
1
Reaction score
0
Hi,

I am looking for a solution that generates combinations of objects from a series of objects in a set. For example, {Apple, Pear, Orange} should bring back
Apple
Pear
Orange
Apple, Pear
Apple, Pear, Orange,
Apple, Orange
...

Items in the series should not repeat (i.e. Apple, Orange / Orange, Apple should only appear once). Any online generators anybody can suggest? Or, material I can use to figure this out?

Many thanks
 
Mathematics news on Phys.org
You forgot "Pear, Orange", the formula is 2^n with n is the number of elements in the set. Beware that 2^n also includes an empty set.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top