Suppose I have several exponentially distributed random variables, each of them representing the probability that some particular event occurs within some amount of time. I can't seem to come up with any intuition as to how to combine those density functions (or distribution functions) to express probabilities about ANY of the events occurring.(adsbygoogle = window.adsbygoogle || []).push({});

To give a concrete example, say the A-train and the B-train arrive on separate tracks and their inter-arrival times are independent of each other, and let [tex]X[/tex] be the continuous rv representing the amount of time until a train arrives. Say the density functions and distribution functions for the two train lines are given by:

[tex]f_a(x) = \frac{1}{4} e^{-\frac{x}{4}} \qquad F_a(x) = 1 - e^{-\frac{x}{4}} \qquad \mbox{ for } x>0 \mbox{, and 0 otherwise}[/tex]

[tex]f_b(x) = \frac{1}{5} e^{-\frac{x}{5}} \qquad F_b(x) = 1 - e^{-\frac{x}{5}} \qquad \mbox{ for } x>0 \mbox{, and 0 otherwise}[/tex]

so the expected time until an A-train arrives [tex]E_a[x] = 4\mbox{ min.}[/tex]

and the expected time until a B-train arrives [tex]E_b[x] = 5\mbox{ min.}[/tex]

and it is easy to determine the probability for an A-train to arrive within any specific amount of time, and similarly for a B-train.

But how can those functions be combined into a single distribution to express the expected time [tex]E_{a|b}[x][/tex] until ANY train arrives, or the probability that ANY train will arrive within, say 2 minutes?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Combining exponential distributions

**Physics Forums | Science Articles, Homework Help, Discussion**