- #1

M. next

- 382

- 0

[S[itex]_{x}[/itex], S[itex]_{y}[/itex]]= i[itex]\hbar[/itex]S[itex]_{z}[/itex] (Equation 1)

and

[S[itex]_{y}[/itex], S[itex]_{z}[/itex]]= i[itex]\hbar[/itex]S[itex]_{x}[/itex] (Equation 2)

and

[S[itex]_{z}[/itex], S[itex]_{x}[/itex]]= i[itex]\hbar[/itex]S[itex]_{y}[/itex] (Equation 3)

but can we, starting from Equations 1, 2, and 3 find Sx and Sy? Can we work in the opposite direction?