Commutative & Associative property of negative numbers

Click For Summary
SUMMARY

The discussion centers on the commutative and associative properties of addition, particularly in relation to negative numbers. It establishes that while the commutative property holds for addition (a + b = b + a), it does not apply to subtraction in the traditional sense, as subtraction is redefined as the addition of an additive inverse. The associative property is confirmed to hold for both positive and negative integers, as demonstrated through various scenarios. The conversation also clarifies that subtraction is not a binary operation in group theory but rather an operation involving the additive inverse.

PREREQUISITES
  • Understanding of basic arithmetic operations (addition and subtraction)
  • Familiarity with group theory concepts, particularly binary operations
  • Knowledge of additive inverses and their role in arithmetic
  • Basic understanding of mathematical structures such as rings and fields
NEXT STEPS
  • Explore the properties of additive inverses in various mathematical contexts
  • Study group theory fundamentals, focusing on binary operations and their implications
  • Investigate the differences between subtraction and addition of inverses in algebra
  • Learn about mathematical structures like rings and fields, particularly their operations
USEFUL FOR

Mathematicians, educators, students studying algebra, and anyone interested in the foundational properties of arithmetic operations.

sonadoramante
Messages
19
Reaction score
3
TL;DR
Commutative & Associative property of addition of negative numbers.
Commutative property of addition.

If a & b are integers then,

a+b = b+a
2+3 = 3+2
5.

Does not work for subtraction.
2-3 = -1
3-2= 1

Having said that, what about the special case with negative numbers (when we also move their respective signs)
-5 + 7 = 2 & 7 + (-5) = 2.
15 -7 = 8 & -7 + 15 = 7.

Associative property of addition.

If a, b & c are integers then,

a + (b+c) = (a+b) + c
2 + (3+4) = (2+3) + 4
2+7 = 5+4
9.

I tried 5 scenarios for the above,
a= - b = + c= -
a= + b= - c=+
a=+ b=+ c=-
a=- b=- c=+
a=- b=- c=-

And they all seem to work. It also seems to work for negative numbers in multiplication as well.

Is there a special case for commutativity & associativity for negative numbers?
 
Mathematics news on Phys.org
The only reason it does not work is the wrong understanding of subtraction. On the level of group axioms which you used as language here, subtraction does not exist as binary operation. It is the unary operation of inversion: ##x \longmapsto x^{-1} := -x##. What you call subtraction is actually an addition: ##(x,y)\longmapsto x+ (-y)##. It is commonly written as ##x-y##, but this is only an abbreviation which causes confusion if used as in your question.
 
Last edited:
  • Like
Likes   Reactions: hmmm27 and sonadoramante
fresh_42 said:
The only reason it does not work is the wrong understanding of subtraction. On the level of group axioms which you used as language here, subtraction does not exist as binary operation. It is the unary operation of inversion: ##x \longmapsto x^{-1} := -x##. What you call subtraction is actually an addition: ##(x,y)\longmapsto x+ (-y)##. It is commonly written as ##x-y##, but this is only an abbreviation which causes confusion if used as in your question.
Makes perfect sense! Thanks.
 
Last edited by a moderator:
sonadoramante said:
And they all seem to work. It also seems to work for negative numbers in multiplication as well.
Besides the group axioms that fresh_42 mentioned, there are other mathematical structures such as rings, integral domains, and fields, all of which have two binary operations: addition and multiplication. Subtraction isn't included as one of the operations.

However, we can define ##a - b## as ##a + (-b)##, where ##-b## is the additive inverse of ##b##. Then ##a + (-b) = (-b) + a##, and ##a + (-b + c) = (a + (-b)) + c##, so we have commutivity and associativity
sonadoramante said:
Is there a special case for commutativity & associativity for negative numbers?
The sign of the numbers doesn't enter into things.
 
  • Like
Likes   Reactions: sonadoramante
Mark44 said:
The sign of the numbers doesn't enter into things.
Further, the fact that you happen to put a minus sign in front of something does not make it negative. -(-1) is positive.

In some domains there is not even a notion of "positive" or "negative". For instance, the integers modulo 3 where 2 = -1.
 
  • Like
Likes   Reactions: sonadoramante

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K